Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37107379

ABSTRACT

Waste generated from the agro-food industry represents a concerning environmental, social and economic issue. The Food and Agriculture Organization of the United Nations defines food waste as all food that decreases in quantity or quality to the extent that it is thrown out by food service providers and consumers. The FAO reports that 17% of worldwide food production may be wasted. Food waste may include fresh products, food close to the expiration date discarded by retailers and food products from household kitchens and eating establishments. However, food waste offers different possibilities to extract functional ingredients from different sources, such as dairy, cereals, fruits, vegetables, fibers, oils, dye and bioactive compounds. The optimization of agro-food waste as an ingredient will help in the development and innovation of food products to generate functional food and beverages to prevent and treat several diseases in consumers.

2.
Antioxidants (Basel) ; 11(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35883895

ABSTRACT

The extraction of lycopene was carried out with three types of vegetable oils (grape, extra virgin olive, and peanut) by means of two methods: agitation and high-intensity ultrasound with a frequency of 20 kHz at an amplitude of 80% with periods of 40 s of sonication for 20 min at a temperature of 40 °C. The antioxidant determination by inhibition of ABTS and DPPH radicals showed no significant differences (p > 0.05) for inhibition of the ABTS radical in native oils and oils with lycopene. However, the radical DPPH showed that the native oils presented significant differences (p ≤ 0.05) compared to the samples with lycopene. FTIR spectra revealed the characteristic functional groups of lycopene exhibiting two characteristic peaks at 2923 cm−1 and 2957 cm−1. The DSC thermograms showed that the higher the degree of oil unsaturation, the lower the melting temperatures. Olive oil was the least unsaturated with the highest amount of oleic fatty acid. Grapeseed oil reported the lowest melting temperature at around −24.64 °C. Extra virgin olive oil showed the lightest values (L* = 41.08 ± 0.45) of brightness, and the peanut oil with lycopene was the darkest (L* = 16.72 ± 0.05). The extraction of lycopene from organic wastes treated with agitation and ultrasound was satisfactory reducing the use of conventional solvents. However, extraction with olive oil under agitation showed the best results.

3.
Polymers (Basel) ; 14(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35335587

ABSTRACT

There are two types of milk whey obtained from cheese manufacture: sweet and acid. It retains around 55% of the nutrients of the milk. Milk whey is considered as a waste, creating a critical pollution problem, because 9 L of whey are produced from every 10 L of milk. Some treatments such as hydrolysis by chemical, fermentation process, enzymatic action, and green technologies (ultrasound and thermal treatment) are successful in obtaining peptides from protein whey. Milk whey peptides possess excellent functional properties such as antihypertensive, antiviral, anticancer, immunity, and antioxidant, with benefits in the cardiovascular, digestive, endocrine, immune, and nervous system. This review presents an update of the applications of milk whey hydrolysates as a high value-added peptide based on their functional properties.

4.
Foods ; 9(8)2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32806694

ABSTRACT

In this study, the preparation of a milk whey-based beverage with the addition of different concentrations of hydrolyzed collagen (0.3%, 0.5%, 0.75%, and 1%) was carried out. The control was considered at a concentration of 0%. Physicochemical properties, viscosity, antioxidant activity, and microbiological parameters were evaluated. The 1% collagen treatment showed the highest protein content (9.75 ± 0.20 g/L), as well as radical inhibition for ATBS (48.30%) and DPPH (30.06%). There were no significant differences (p ≥ 0.05) in the fat and lactose parameters. However, the pH in the control treatment was lower compared to beverages treated with hydrolyzed collagen. Fourier transform-infrared spectroscopy showed spectra characteristic of lactose and collagen amides. The viscosity increased significantly as the concentration of hydrolyzed collagen increased. The addition of hydrolyzed collagen increased the bioavailability, nutritional value, and the antioxidant activity of the beverage. Hydrolyzed collagen acted as an antimicrobial agent, as there was no presence of microorganism pathogens observed in the treated beverages.

SELECTION OF CITATIONS
SEARCH DETAIL
...