Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Front Plant Sci ; 13: 866053, 2022.
Article in English | MEDLINE | ID: mdl-35734259

ABSTRACT

The use of more salt stress-tolerant vine rootstocks can be a sustainable strategy for adapting traditional grapevine cultivars to future conditions. However, how the new M1 and M4 rootstocks perform against salinity compared to conventional ones, such as the 1103-Paulsen, had not been previously assessed under real field conditions. Therefore, a field trial was carried out in a young 'Tempranillo' (Vitis vinifera L.) vineyard grafted onto all three rootstocks under a semi-arid and hot-summer Mediterranean climate. The vines were irrigated with two kinds of water: a non-saline Control with EC of 0.8 dS m-1 and a Saline treatment with 3.5 dS m-1. Then, various physiological parameters were assessed in the scion, and, additionally, gene expression was studied by high throughput sequencing in leaf and berry tissues. Plant water relations evidenced the osmotic effect of water quality, but not that of the rootstock. Accordingly, leaf-level gas exchange rates were also reduced in all three rootstocks, with M1 inducing significantly lower net photosynthesis rates than 1103-Paulsen. Nevertheless, the expression of groups of genes involved in photosynthesis and amino acid metabolism pathways were not significantly and differentially expressed. The irrigation with saline water significantly increased leaf chloride contents in the scion onto the M-rootstocks, but not onto the 1103P. The limitation for leaf Cl- and Na+ accumulation on the scion was conferred by rootstock. Few processes were differentially regulated in the scion in response to the saline treatment, mainly, in the groups of genes involved in the flavonoids and phenylpropanoids metabolic pathways. However, these transcriptomic effects were not fully reflected in grape phenolic ripeness, with M4 being the only one that did not cause reductions in these compounds in response to salinity, and 1103-Paulsen having the highest overall concentrations. These results suggest that all three rootstocks confer short-term salinity tolerance to the scion. The lower transcriptomic changes and the lower accumulation of potentially phytotoxic ions in the scion grafted onto 1103-Paulsen compared to M-rootstocks point to the former being able to maintain this physiological response in the longer term. Further agronomic trials should be conducted to confirm these effects on vine physiology and transcriptomics in mature vineyards.

3.
J Hazard Mater ; 397: 122713, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32402955

ABSTRACT

Boron (B), an essential nutrient for plants, participates in many physiological processes, with emphasis its role in the formation of the plant's cell wall. In soil, the range between deficiency and toxicity of B is very narrow as compared to other nutrients, which makes its management in agriculture very difficult, as it depends on the soil and environmental conditions. B stress simultaneously acts with others (extreme temperatures, excess of light, high concentration of CO2, drought, salinity or heavy metal contamination, etc.). The effects of these other stresses could increase the sensitivity of plants to B toxicity or deficiency. The simultaneous combination (B stress × other abiotic stresses) is a complex interaction that should be analyzed in detail if the resistance of crops to climate change is needed. This article reviews the response of plants when facing a combination of B stress with other stresses, and compares this response with the individual stresses. Also, in the last few years, the role of B has been described in multiple plant functions that can improve its resilience to specific stresses. Thus, this article also analyses in what conditions the application of B can be efficient for the improvement of the plant's response to other stresses.


Subject(s)
Boron , Droughts , Boron/toxicity , Salinity , Soil , Stress, Physiological
4.
Front Plant Sci ; 10: 1619, 2019.
Article in English | MEDLINE | ID: mdl-31921262

ABSTRACT

Drought is now recognized as the abiotic stress that causes most problems in agriculture, mainly due to the strong water demand from intensive culture and the effects of climate change, especially in arid/semi-arid areas. When plants suffer from water deficit (WD), a plethora of negative physiological alterations such as cell turgor loss, reduction of CO2 net assimilation rate, oxidative stress damage, and nutritional imbalances, among others, can lead to a decrease in the yield production and loss of commercial quality. Nutritional imbalances in plants grown under drought stress occur by decreasing water uptake and leaf transpiration, combined by alteration of nutrient uptake and long-distance transport processes. Plants try to counteract these effects by activating drought resistance mechanisms. Correct accumulation of salts and water constitutes an important portion of these mechanisms, in particular of those related to the cell osmotic adjustment and function of stomata. In recent years, molecular insights into the regulation of K+, Cl-, and water transport under drought have been gained. Therefore, this article brings an update on this topic. Moreover, agronomical practices that ameliorate drought symptoms of crops by improving nutrient homeostasis will also be presented.

5.
Front Plant Sci ; 6: 571, 2015.
Article in English | MEDLINE | ID: mdl-26257767

ABSTRACT

Sufficient nutrient application is one of the most important factors in producing quality citrus fruits. One of the main guides in planning citrus fertilizer programs is by directly monitoring the plant nutrient content. However, this requires analysis of a large number of leaf samples using expensive and time-consuming chemical techniques. Over the last 5 years, it has been demonstrated that it is possible to quantitatively estimate certain nutritional elements in citrus leaves by using the spectral reflectance values, obtained by using near infrared reflectance spectroscopy (NIRS). This technique is rapid, non-destructive, cost-effective and environmentally friendly. Therefore, the estimation of macro and micronutrients in citrus leaves by this method would be beneficial in identifying the mineral status of the trees. However, to be used effectively NIRS must be evaluated against the standard techniques across different cultivars. In this study, NIRS spectral analysis, and subsequent nutrient estimations for N, K, Ca, Mg, B, Fe, Cu, Mn, and Zn concentration, were performed using 217 leaf samples from different citrus trees species. Partial least square regression and different pre-processing signal treatments were used to generate the best estimation against the current best practice techniques. It was verified a high proficiency in the estimation of N (Rv = 0.99) and Ca (Rv = 0.98) as well as achieving acceptable estimation for K, Mg, Fe, and Zn. However, no successful calibrations were obtained for the estimation of B, Cu, and Mn.

6.
Food Chem ; 175: 329-36, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25577088

ABSTRACT

The irrigation necessities for grapefruit production are very high. Due to the scarcity of water resources, growers use deficit irrigation (DI) - which could affect the fruit quality. Different DI strategies were studied: Control (irrigated at 100% ETc) and T1, T2 and T3 (50% ETc at phases I, II and III of fruit growth, respectively). Strategy T1 only delayed external maturation depending on the duration of the water stress. High water stress in T2 delayed fruit maturation, increased acidity and reduced the sugar concentration. Under T2, trees suffering moderate water stress showed increased flavonoid and phenolic contents but decreased lycopene levels. External maturation was delayed in T3 when severe stress occurred during the first part of phase III. Strategy T3 advanced internal ripening when moderate water stress occurred during the first 40 days of phase III, increasing sugar accumulation, promoted by the high acidity of the fruits. Moderate water stress also increased ß-carotene, flavonoids and phenolics levels.


Subject(s)
Agricultural Irrigation/methods , Citrus paradisi/chemistry , Fruit/chemistry , Antioxidants/chemistry , Ascorbic Acid/chemistry , Flavonoids/analysis , Phenols/analysis , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...