Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 195(3): 2323-2338, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38478585

ABSTRACT

Hydroxylated monoterpenes (HMTPs) are differentially emitted by tomato (Solanum lycopersicum) plants resisting bacterial infection. We have studied the defensive role of these volatiles in the tomato response to bacteria, whose main entrance is through stomatal apertures. Treatments with some HMTPs resulted in stomatal closure and pathogenesis-related protein 1 (PR1) induction. Particularly, α-terpineol induced stomatal closure in a salicylic acid (SA) and abscisic acid-independent manner and conferred resistance to bacteria. Interestingly, transgenic tomato plants overexpressing or silencing the monoterpene synthase MTS1, which displayed alterations in the emission of HMTPs, exhibited changes in the stomatal aperture but not in plant resistance. Measures of both 2-C-methyl-D-erythritol-2,4-cyclopyrophosphate (MEcPP) and SA levels revealed competition for MEcPP by the methylerythritol phosphate (MEP) pathway and SA biosynthesis activation, thus explaining the absence of resistance in transgenic plants. These results were confirmed by chemical inhibition of the MEP pathway, which alters MEcPP levels. Treatments with benzothiadiazole (BTH), a SA functional analog, conferred enhanced resistance to transgenic tomato plants overexpressing MTS1. Additionally, these MTS1 overexpressors induced PR1 gene expression and stomatal closure in neighboring plants. Our results confirm the role of HMTPs in both intra- and interplant immune signaling and reveal a metabolic crosstalk between the MEP and SA pathways in tomato plants.


Subject(s)
Monoterpenes , Plant Diseases , Plant Stomata , Plants, Genetically Modified , Salicylic Acid , Solanum lycopersicum , Solanum lycopersicum/microbiology , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Salicylic Acid/metabolism , Monoterpenes/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Stomata/physiology , Plant Stomata/drug effects , Hydroxylation , Thiadiazoles/pharmacology , Gene Expression Regulation, Plant , Sugar Phosphates/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Erythritol/analogs & derivatives , Erythritol/metabolism , Disease Resistance/genetics , Disease Resistance/drug effects
2.
Hortic Res ; 11(1): uhad248, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38239809

ABSTRACT

Biotic and abiotic stresses can severely limit crop productivity. In response to drought, plants close stomata to prevent water loss. Furthermore, stomata are the main entry point for several pathogens. Therefore, the development of natural products to control stomata closure can be considered a sustainable strategy to cope with stresses in agriculture. Plants respond to different stresses by releasing volatile organic compounds. Green leaf volatiles, which are commonly produced across different plant species after tissue damage, comprise an important group within volatile organic compounds. Among them, (Z)-3-hexenyl butyrate (HB) was described as a natural inducer of stomatal closure, playing an important role in stomatal immunity, although its mechanism of action is still unknown. Through different genetic, pharmacological, and biochemical approaches, we here uncover that HB perception initiates various defence signalling events, such as activation of Ca2+ permeable channels, mitogen-activated protein kinases, and production of Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mediated reactive oxygen species. Furthermore, HB-mediated stomata closure was found to be independent of abscisic acid biosynthesis and signalling. Additionally, exogenous treatments with HB alleviate water stress and improve fruit productivity in tomato plants. The efficacy of HB was also tested under open field conditions, leading to enhanced resistance against Phytophthora spp. and Pseudomonas syringae infection in potato and tomato plants, respectively. Taken together, our results provide insights into the HB signalling transduction pathway, confirming its role in stomatal closure and plant immune system activation, and propose HB as a new phytoprotectant for the sustainable control of biotic and abiotic stresses in agriculture.

3.
New Phytol ; 239(6): 2292-2306, 2023 09.
Article in English | MEDLINE | ID: mdl-37381102

ABSTRACT

Carotenoids are photoprotectant pigments and precursors of hormones such as strigolactones (SL). Carotenoids are produced in plastids from geranylgeranyl diphosphate (GGPP), which is diverted to the carotenoid pathway by phytoene synthase (PSY). In tomato (Solanum lycopersicum), three genes encode plastid-targeted GGPP synthases (SlG1 to SlG3) and three genes encode PSY isoforms (PSY1 to PSY3). Here, we investigated the function of SlG1 by generating loss-of-function lines and combining their metabolic and physiological phenotyping with gene co-expression and co-immunoprecipitation analyses. Leaves and fruits of slg1 lines showed a wild-type phenotype in terms of carotenoid accumulation, photosynthesis, and development under normal growth conditions. In response to bacterial infection, however, slg1 leaves produced lower levels of defensive GGPP-derived diterpenoids. In roots, SlG1 was co-expressed with PSY3 and other genes involved in SL production, and slg1 lines grown under phosphate starvation exuded less SLs. However, slg1 plants did not display the branched shoot phenotype observed in other SL-defective mutants. At the protein level, SlG1 physically interacted with the root-specific PSY3 isoform but not with PSY1 and PSY2. Our results confirm specific roles for SlG1 in producing GGPP for defensive diterpenoids in leaves and carotenoid-derived SLs (in combination with PSY3) in roots.


Subject(s)
Diterpenes , Solanum lycopersicum , Solanum lycopersicum/genetics , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/genetics , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/metabolism , Farnesyltranstransferase , Carotenoids/metabolism , Protein Isoforms , Plant Leaves/metabolism
4.
Plants (Basel) ; 11(8)2022 Apr 17.
Article in English | MEDLINE | ID: mdl-35448819

ABSTRACT

Legumes are the recommended crops to fight against soil degradation and loss of fertility because of their known positive impacts on soils. Our interest is focused on the identification of plant-growth-promoting endophytes inhabiting nodules able to enhance legume growth in poor and/or degraded soils. The ability of Variovorax paradoxus S110T and Variovorax gossypii JM-310T to promote alfalfa growth in nutrient-poor and metal-contaminated estuarine soils was studied. Both strains behaved as nodule endophytes and improved in vitro seed germination and plant growth, as well as nodulation in co-inoculation with Ensifer medicae MA11. Variovorax ameliorated the physiological status of the plant, increased nodulation, chlorophyll and nitrogen content, and the response to stress and metal accumulation in the roots of alfalfa growing in degraded soils with moderate to high levels of contamination. The presence of plant-growth-promoting traits in Variovorax, particularly ACC deaminase activity, could be under the observed in planta effects. Although the couple V. gossypii-MA11 reported a great benefit to plant growth and nodulation, the best result was observed in plants inoculated with the combination of the three bacteria. These results suggest that Variovorax strains could be used as biofertilizers to improve the adaptation of legumes to degraded soils in soil-recovery programs.

5.
Philos Trans R Soc Lond B Biol Sci ; 375(1812): 20190580, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33012233

ABSTRACT

The 'red complex' is an aggregate of three oral bacteria (Tannerella forsythia, Porphyromonas gingivalis and Treponema denticola) responsible for severe clinical manifestation of periodontal disease. Here, we report the first direct evidence of ancient T.forsythia DNA in dentin and dental calculus samples from archaeological skeletal remains that span from the Pre-Hispanic to the Colonial period in Mexico. We recovered twelve partial ancient T. forsythia genomes and observed a distinct phylogenetic placement of samples, suggesting that the strains present in Pre-Hispanic individuals likely arrived with the first human migrations to the Americas and that new strains were introduced with the arrival of European and African populations in the sixteenth century. We also identified instances of the differential presence of genes between periods in the T. forsythia ancient genomes, with certain genes present in Pre-Hispanic individuals and absent in Colonial individuals, and vice versa. This study highlights the potential for studying ancient T. forsythia genomes to unveil past social interactions through analysis of disease transmission. Our results illustrate the long-standing relationship between this oral pathogen and its human host, while also unveiling key evidence to understand its evolutionary history in Pre-Hispanic and Colonial Mexico. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.


Subject(s)
Genome, Bacterial , Gram-Negative Bacterial Infections/history , Periodontitis/history , Tannerella forsythia/genetics , Archaeology , Genomics , Gram-Negative Bacterial Infections/microbiology , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, Ancient , History, Medieval , Humans , Mexico , Periodontitis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...