Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 19669, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39181908

ABSTRACT

In this study, thermoplastic starch (TPS) biofilms were developed using starch isolated from the seeds of Melicoccus bijugatus (huaya) and reinforced with bentonite clays at concentrations of 1%, 3%, and 5% by weight. Novelty of this research lies in utilizing a non-conventional starch source and enhancing properties of TPS through clay reinforcement. FTIR analysis verified bentonite's nature of clays, while SEM analysis provided insights into morphology and agglomeration behavior. Key findings include a notable increase in biofilm thickness and elastic modulus with higher clay content. Specifically, tensile strength of biofilms improved from 2.5 MPa for pure TPS to 5.0 MPa with 5% clay reinforcement. The elastic modulus increased from 25 MPa (TPS) to 60 MPa (5% clay). Thermal stability also showed enhancement, with initial degradation temperature increasing from 110 °C for pure TPS to 130 °C for TPS with 5% clay. Water vapor permeability (WVP) tests demonstrated a decrease in WVP values from 4.11 × 10-10 g m-1 s-1 Pa-1 for pure TPS to 2.09 × 10-10 g m-1 s-1·Pa-1 for TPS with 5% clay, indicating a significant barrier effect due to clay dispersion. These results suggest that biofilms based on huaya starch and reinforced with bentonite clay have considerable potential for sustainable food packaging applications, offering enhanced mechanical and barrier properties.

2.
Polymers (Basel) ; 15(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37447497

ABSTRACT

Hybrid membranes with three different thicknesses, PMDS_C1, PMDS_C2, and PMDS_C3 (0.21 ± 0.03 mm, 0.31 ± 0.05 mm, and 0.48 ± 0.07 mm), were synthesized by the sol-gel method using polydimethylsiloxane, hydroxy-terminated, and cyanopropyltriethoxysilane. The presence of cyano, methyl, and silicon-methyl groups was confirmed by FTIR analysis. Contact angle analysis revealed the membranes' hydrophilic nature. Solvent resistance tests conducted under vortex and ultrasonic treatments (45 and 60 min) demonstrated a preference order of acetonitrile > methanol > water. Furthermore, the membranes exhibited stability over 48 h when exposed to different pH conditions (1, 3, 6, and 9), with negligible mass losses below 1%. The thermogravimetric analysis showed that the material was stable until 400 °C. Finally, the sorption analysis showed its capacity to detect furfural, 2-furylmethylketone, 5-methylfurfural, and 2-methyl 2-furoate. The thicker membrane was able to adsorb and slightly desorb a higher concentration of furanic compounds due to its high polarity provided by the addition of the cyano groups. The results indicated that the membranes may be suitable for sorbent materials in extracting and enriching organic compounds.

SELECTION OF CITATIONS
SEARCH DETAIL