Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 14(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38535021

ABSTRACT

Numerous papers report the efficiency of the automatic interpretation capabilities of commercial algorithms. Unfortunately, these algorithms are proprietary, and academia has no means of directly contributing to these results. In fact, nothing at the same stage of development exists in academia. Despite the extensive research in ECG signal processing, from signal conditioning to expert systems, a cohesive single application for clinical use is not ready yet. This is due to a serious lack of coordination in the academic efforts, which involve not only algorithms for signal processing, but also the signal acquisition equipment itself. For instance, the different sampling rates and the different noise levels frequently found in the available signal databases can cause severe incompatibility problems when the integration of different algorithms is desired. Therefore, this work aims to solve this incompatibility problem by providing the academic community with a diagnostic-grade electrocardiograph. The intention is to create a new standardized ECG signals database in order to address the automatic interpretation problem and create an electrocardiography system that can fully assist clinical practitioners, as the proprietary systems do. Achieving this objective is expected through an open and coordinated collaboration platform for which a webpage has already been created.

2.
Sensors (Basel) ; 23(9)2023 May 07.
Article in English | MEDLINE | ID: mdl-37177757

ABSTRACT

The work carried out in this paper consists of the classification of the physiological signal generated by eye movement called Electrooculography (EOG). The human eye performs simultaneous movements, when focusing on an object, generating a potential change in origin between the retinal epithelium and the cornea and modeling the eyeball as a dipole with a positive and negative hemisphere. Supervised learning algorithms were implemented to classify five eye movements; left, right, down, up and blink. Wavelet Transform was used to obtain information in the frequency domain characterizing the EOG signal with a bandwidth of 0.5 to 50 Hz; training results were obtained with the implementation of K-Nearest Neighbor (KNN) 69.4%, a Support Vector Machine (SVM) of 76.9% and Decision Tree (DT) 60.5%, checking the accuracy through the Jaccard index and other metrics such as the confusion matrix and ROC (Receiver Operating Characteristic) curve. As a result, the best classifier for this application was the SVM with Jaccard Index.


Subject(s)
Algorithms , Support Vector Machine , Humans , Electrooculography/methods , Eye Movements , Wavelet Analysis
3.
Sensors (Basel) ; 21(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502773

ABSTRACT

People with severe disabilities require assistance to perform their routine activities; a Human-Machine Interface (HMI) will allow them to activate devices that respond according to their needs. In this work, an HMI based on electrooculography (EOG) is presented, the instrumentation is placed on portable glasses that have the task of acquiring both horizontal and vertical EOG signals. The registration of each eye movement is identified by a class and categorized using the one hot encoding technique to test precision and sensitivity of different machine learning classification algorithms capable of identifying new data from the eye registration; the algorithm allows to discriminate blinks in order not to disturb the acquisition of the eyeball position commands. The implementation of the classifier consists of the control of a three-wheeled omnidirectional robot to validate the response of the interface. This work proposes the classification of signals in real time and the customization of the interface, minimizing the user's learning curve. Preliminary results showed that it is possible to generate trajectories to control an omnidirectional robot to implement in the future assistance system to control position through gaze orientation.


Subject(s)
Robotics , Algorithms , Electrooculography , Eye Movements , Humans , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...