Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Environ Res ; 250: 118455, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38367838

ABSTRACT

Cork oak and pine bark, two of the most prolific byproducts of the European forestry sector, were assessed as biosorbents for eliminating potentially toxic elements (PTEs) from water-based solutions. Our research suggests that bioadsorption stands out as a viable and environmental eco-friendly technology, presenting a sustainable method for the extraction of PTEs from polluted water sources. This study aimed to evaluate and compare the efficiency of cork powder and pine bark powder as biosorbents. Specifically, the adsorption of Fe, Cu, Zn, Cd, Ni, Pb and Sn at equilibrium were studied through batch experiments by varying PTEs concentrations, pH, and ionic strength. Results from adsorption-desorption experiments demonstrate the remarkable capacity of both materials to retain the studied PTE. Cork powder and pine bark powder exhibited the maximum retention capacity for Fe and Cd, while they performed poorly for Pb and Sn, respectively. Nevertheless, pine bark showed a slightly lower retention capacity than cork. Increasing the pH resulted in cork showing the highest adsorption for Zn and the lowest for Sn, while for pine bark, Cd was the most adsorbed, and Sn was the least adsorbed, respectively. The highest adsorption of both materials occurred at pH 3.5-5, depending on the PTE tested. The ionic strength also influenced the adsorption of the various PTEs for both materials, with decreased adsorption as ionic strength increased. The findings suggest that both materials could be effective for capturing and eliminating the examined PTEs, albeit with different efficiencies. Remarkably, pine bark demonstrated superior adsorption capabilities, which were observed to vary based on the specific element and the experimental conditions. These findings contribute to elucidating the bio-adsorption potential of these natural materials, specifically their suitability in mitigating PTEs pollution, and favoring the recycling and revalorization of byproducts that might otherwise be considered residue.


Subject(s)
Pinus , Plant Bark , Quercus , Water Pollutants, Chemical , Pinus/chemistry , Quercus/chemistry , Plant Bark/chemistry , Adsorption , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Powders/chemistry , Hydrogen-Ion Concentration , Metals, Heavy/analysis , Metals, Heavy/chemistry
2.
Materials (Basel) ; 15(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35888489

ABSTRACT

This research is concerned with the adsorption and desorption of Cu and As(V) on/from different soils and by-products. Both contaminants may reach soils by the spreading of manure/slurries, wastewater, sewage sludge, or pesticides, and also due to pollution caused by mining and industrial activities. Different crop soils were sampled in A Limia (AL) and Sarria (S) (Galicia, NW Spain). Three low-cost by-products were selected to evaluate their bio-adsorbent potential: pine bark, oak ash, and mussel shell. The adsorption/desorption studies were carried out by means of batch-type experiments, adding increasing and individual concentrations of Cu and As(V). The fit of the adsorption data to the Langmuir, Freundlich, and Temkin models was assessed, with good results in some cases, but with high estimation errors in others. Cu retention was higher in soils with high organic matter and/or pH, reaching almost 100%, while the desorption was less than 15%. The As(V) adsorption percentage clearly decreased for higher As doses, especially in S soils, from 60−100% to 10−40%. The As(V) desorption was closely related to soil acidity, being higher for soils with higher pH values (S soils), in which up to 66% of the As(V) previously adsorbed can be desorbed. The three by-products showed high Cu adsorption, especially oak ash, which adsorbed all the Cu added in a rather irreversible manner. Oak ash also adsorbed a high amount of As(V) (>80%) in a rather non-reversible way, while mussel shell adsorbed between 7 and 33% of the added As(V), and pine bark adsorbed less than 12%, with both by-products reaching 35% desorption. Based on the adsorption and desorption data, oak ash performed as an excellent adsorbent for both Cu and As(V), a fact favored by its high pH and the presence of non-crystalline minerals and different oxides and carbonates. Overall, the results of this research can be relevant when designing strategies to prevent Cu and As(V) pollution affecting soils, waterbodies, and plants, and therefore have repercussions on public health and the environment.

3.
Article in English | MEDLINE | ID: mdl-35886277

ABSTRACT

The current research focuses on the adsorption/desorption characteristics of the antibiotics ciprofloxacin (CIP) and trimethoprim (TRI) taking place in 17 agricultural soils, which are studied by means of batch-type experiments. The results show that adsorption was higher for CIP, with Freundlich KF values ranging between 1150 and 5086 Ln µmol1-n kg-1, while they were between 29 and 110 Ln µmol1-n kg-1 in the case of TRI. Other parameters, such as the Langmuir maximum adsorption capacity (qm(ads)), as well as the Kd parameter in the linear model and also the adsorption percentages, follow the same trend as KF. Desorption was lower for CIP (with KF(des) values in the range 1089-6234 Ln µmol1-n kg-1) than for TRI (with KF(des) ranging between 26 and 138 Ln µmol1-n kg-1). The higher irreversibility of CIP adsorption was also confirmed by its lower nF(des)/nF(ads) ratios, compared to TRI. Regarding soil characteristics, it was evidenced that nitrogen and carbon contents, as well as mineral fractions, had the highest influence on the adsorption/desorption process. These results can be considered relevant as regards the fate of both antibiotics when they reach the environment as pollutants and therefore could be considered in assessment procedures focused on environmental and public health aspects.


Subject(s)
Soil Pollutants , Soil , Adsorption , Anti-Bacterial Agents , Ciprofloxacin , Soil Pollutants/analysis , Trimethoprim
4.
J Contam Hydrol ; 218: 59-69, 2018 11.
Article in English | MEDLINE | ID: mdl-30361114

ABSTRACT

Tunable Resistive Pulse Sensing, TRPS, is an emerging technique used in quantification and measuring the size (particle-by-particle) of viruses, exosomes and engineered colloidal spheres in biological fluids. We study the features of TRPS to enhance size characterization and quantification of submicron-sized microplastics, also called plastic microparticles, MP, in freshwater environments. We report alterations on the detection of the resistive pulses in the TRPS caused by humic acids, HA, during the size measurement of polystyrene microspheres used as MP surrogate. We discuss the alteration of the electric field in the measuring channel of the TRPS apparatus induced by the passage of HA. TRPS is a fast and precise technique for counting and size determination of MP but needs the evaluation of the influence of the organic matter on the current blockades. We show that statistical clustering models of the magnitude distribution of the resistive pulses can help to detect and quantify changes in the pulse size distributions induced by flocculation of humic acids. Conclusions of this study indicate that TRPS can be a valuable tool to improve the knowledge of the MP fate in surface waters, in the vadose zone and groundwater.


Subject(s)
Humic Substances , Plastics , Environmental Monitoring , Microspheres
5.
ChemSusChem ; 11(11): 1797-1804, 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-29692002

ABSTRACT

Amorphous silicon carbide (a-SiC:H) is a promising material for photoelectrochemical water splitting owing to its relatively small band-gap energy and high chemical and optoelectrical stability. This work studies the interplay between charge-carrier separation and collection, and their injection into the electrolyte, when modifying the semiconductor/electrolyte interface. By introducing an n-doped nanocrystaline silicon oxide layer into a p-doped/intrinsic a-SiC:H photocathode, the photovoltage and photocurrent of the device can be significantly improved, reaching values higher than 0.8 V. This results from enhancing the internal electric field of the photocathode, reducing the Shockley-Read-Hall recombination at the crucial interfaces because of better charge-carrier separation. In addition, the charge-carrier injection into the electrolyte is enhanced by introducing a TiO2 protective layer owing to better band alignment at the interface. Finally, the photocurrent was further enhanced by tuning the absorber layer thickness, arriving at a thickness of 150 nm, after which the current saturates to 10 mA cm-2 at 0 V vs. the reversible hydrogen electrode in a 0.2 m aqueous potassium hydrogen phthalate (KPH) electrolyte at pH 4.

6.
ACS Omega ; 3(10): 14392-14398, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30775640

ABSTRACT

Currently available (photo-)electrochemical technologies for water treatment establish a trade-off between low-pollutant concentration and costs. This paper aims at decoupling these two variables by designing a photo-oxidation device using earth abundant materials and an electronic-free approach. The proposed device combines a graphite/graphite electrochemical system with a silicon-based solar cell that provides the necessary electrical power. First, the optimum operational voltage for the graphite/graphite electrochemical system was found to be around 1.6 V. That corresponded closely to the voltage produced by an a-Si:H/a-Si:H tandem solar cell of approximately 1.35 V. This configuration was shown to provide the best pollutant degradation in relation to the device area, removing 70% of the initial concentration of phenol and 90% of the methylene blue after 4 h of treatment. The chemical oxygen demand (COD) removal of these two contaminants after 4 h of treatment was also promising, 55 and 30%, respectively. Moreover, connecting several solar cells in series led to higher pollutant degradation but lower COD removal, suggesting that the degradation of the intermediate components is a limiting factor. This is expected to be due to the higher currents achieved by the series-connected configuration, which would favor other reactions such as polymerization over the degradation of intermediate species.

7.
J Environ Manage ; 202(Pt 1): 167-177, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28734201

ABSTRACT

The effects of adding two winery wastes, perlite waste (PW) and bentonite waste (BW), to an acid vineyard soil were assessed using some chemical and biological soil properties in a field study that lasted 18 months. The addition of PW (up to 81 Mg ha-1) had neither significant nor permanent effects on soil characteristics such as the pH, organic matter content or nutrient concentrations, the amounts of copper or zinc, or the electrical conductivity. Moreover, no persistent negative effects were found on the enzymatic activities after PW application. In contrast, soil that was amended with up to 71 Mg BW ha-1 showed increases in its soil pH values, exchangeable potassium and water soluble potassium and phosphorus contents. In addition, it caused significant increases in the electrical conductivity and water-soluble Cu. In addition, the phosphomonoesterase enzymatic activity decreased significantly (up to 28%) in response to the amendment with 71 Mg BW ha-1. These results showed that adding BW and PW to the soil may be a good agronomic practice for recycling these types of wastes. However, in the case of PW, its use as a soil amendment must be performed with caution to control its possible harmful effects.


Subject(s)
Copper/chemistry , Farms , Soil , Chemical Fractionation , Phosphorus , Soil Pollutants
9.
Sci Total Environ ; 562: 179-190, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27099999

ABSTRACT

We study the influence of phasing out a cement plant on the heavy metal (Hg, Pb and Cr) content in the surrounding soils, taking into account factors often neglected, such as contributions due to local lithology or land use. The range of total Hg was 10-144µg kg(-1), reaching up to 41 and 145mgkg(-1) for total contents of Pb and Cr, respectively. Forest soils showed higher concentration of Hg than prairie soils, indicating the importance of land use on the accumulation of volatile heavy metals in soils. In forest soils, total Hg showed a trend to decrease with soil depth, whereas in prairie soils the vertical pattern of heavy metal concentrations was quite homogeneous. In most cases, the distance to the cement plant was not a factor of influence in the soils content of the analyzed heavy metals. Total Pb and Cr contents in soils nearby the cement plant were quite similar to those found in the local lithology, resulting in enrichment factor values (EF's) below 2. This suggests that soil parent material is the main source of these heavy metals in the studied soils, while the contribution of the cement plant to Pb and Cr soil pollution was almost negligible. On the contrary, the soils surrounding the cement plant accumulate a significant amount of Hg, compared to the underlying lithology. This was especially noticeable in forest soils, where Hg EF achieved values up to 36. These results are of relevance, bearing in mind that Hg accumulation in soils may be an issue of environmental concern, particularly in prairie soils, where temporal flooding can favor Hg transformation to highly toxic methyl-Hg. In addition, the concurrence of acid soils and total-Cr concentrations in the range of those considered phytotoxic should be also stressed.


Subject(s)
Construction Materials , Environmental Monitoring , Metals, Heavy/analysis , Soil Pollutants/analysis , Europe , Soil/chemistry
10.
Environ Sci Pollut Res Int ; 23(4): 3789-98, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26498818

ABSTRACT

The effect of perlite waste from a winery on general soil characteristics and Cu adsorption was assessed. The studied soil was amended with different perlite waste concentrations corresponding to 10, 20, 40 and 80 Mg ha(-1). General soil characteristics and Cu adsorption and desorption curves were determined after different incubation times (from 1 day to 8 months). The addition of perlite waste to the soil increased the amounts of organic matter as well as soil nutrients such as phosphorus and potassium, and these increments were stable with time. An increase in Cu adsorption capacity was also detected in the perlite waste-amended soils. The effect of perlite waste addition to the soil had special relevance on its Cu adsorption capacity at low coverage concentrations and on the energy of the soil-Cu bonds.


Subject(s)
Aluminum Oxide/chemistry , Copper/analysis , Silicon Dioxide/chemistry , Soil Pollutants/analysis , Soil/chemistry , Vitis/growth & development , Waste Products , Adsorption , Hydrogen-Ion Concentration
11.
J Environ Manage ; 150: 435-443, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25560662

ABSTRACT

The effect of bentonite waste added to a "poor" soil on its general characteristic and copper adsorption capacity was assessed. The soil was amended with different bentonite waste concentrations (0, 10, 20, 40 and 80 Mg ha(-1)) in laboratory pots, and different times of incubation of samples were tested (one day and one, four and eight months). The addition of bentonite waste increased the pH, organic matter content and phosphorus and potassium concentrations in the soil, being stable for P and K, whereas the organic matter decreased with time. Additionally, the copper sorption capacity of the soil and the energy of the Cu bonds increased with bentonite waste additions. However, the use of this type of waste in soil presented important drawbacks for waste dosages higher than 20 Mg ha(-1), such as an excessive increase of the soil pH and an increase of copper in the soil solution.


Subject(s)
Bentonite/chemistry , Copper/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Humans , Hydrogen-Ion Concentration , Industrial Waste , Time Factors , Wine
12.
Environ Sci Pollut Res Int ; 21(16): 9785-95, 2014.
Article in English | MEDLINE | ID: mdl-24809493

ABSTRACT

In spite of its wide-world economic relevance, wine production generates a huge amount of waste that threatens the environment. A batch experiment was designed to assess the effect of the amendment of an agricultural soil with two winery wastes (perlite and bentonite wastes) in the immobilization of cyprodinil. Waste addition (0, 10, 20, 40, and 80 Mg ha(-1)) and different times of incubation of soil-waste mixtures (1, 30, and 120 days) were tested. The addition of wastes improved the soil's ability to immobilize cyprodinil, which was significantly correlated to total C content in soil-waste mixtures. Longer incubation times decreased the cyprodinil sorption possibly due to the mineralization of organic matter but also as a consequence of the high pH values reached after bentonite waste addition (up to 10.0). Cyprodinil desorption increased as the amount of waste added to soil, and the incubation time increased. The use of these winery wastes contributes to a more sustainable agriculture preventing fungicide mobilization to groundwater.


Subject(s)
Fungicides, Industrial/chemistry , Pyrimidines/chemistry , Soil Pollutants/chemistry , Wine , Fungicides, Industrial/analysis , Pyrimidines/analysis , Soil Pollutants/analysis , Time Factors , Water
13.
Phys Chem Chem Phys ; 16(9): 4220-9, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24452785

ABSTRACT

A photoelectrochemical water splitting device (PEC-WSD) was designed and fabricated based on cobalt-phosphate-catalysed and tungsten-gradient-doped bismuth vanadate (W:BiVO4) as the photoanode. A simple and cheap hydrogenated amorphous silicon (a-Si:H) double junction solar cell has been used to provide additional bias. The advantage of using thin film silicon (TF-Si) based solar cells is that this photovoltaic (PV) technology meets the crucial requirements for the PV component in PEC-WSDs based on W:BiVO4 photoanodes. TF-Si PV devices are stable in aqueous solutions, are manufactured by simple and cheap fabrication processes and their spectral response, voltage and current density show an excellent match with the photoanode. This paper is mainly focused on the optimization of the TF-Si solar cell with respect to the remaining solar spectrum transmitted through the W:BiVO4 photoanode. The current matching between the top and bottom cells is studied and optimized by varying the thickness of the a-Si:H top cell. We support the experimental optimization of the current balance between the two sub-cells with simulations of the PV devices. In addition, the impact of the light induced degradation of the a-Si:H double junction, the so-called Staebler-Wronski Effect (SWE), on the performance of the PEC-WSD has been studied. The light soaking experiments on the a-Si:H/a-Si:H double junctions over 1000 hours show that the efficiency of a stand-alone a-Si:H/a-Si:H double junction cell is significantly reduced due to the SWE. Nevertheless, the SWE has a significantly smaller effect on the performance of the PEC-WSD.

14.
J Contam Hydrol ; 158: 14-22, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24412995

ABSTRACT

The release and transport of active ingredients (AIs) from controlled-release formulations (CRFs) have potential to reduce groundwater pesticide pollution. These formulations have a major effect on the release rate and subsequent transport to groundwater. Therefore the influence of CRFs should be included in modeling non-point source pollution by pesticides. We propose a simplified approach that uses a phase transition equation coupled to the diffusion equation that describes the release rate of AIs from commercial CRFs in porous media; the parameters are as follows: a release coefficient, the solubility of the AI, and diffusion transport with decay. The model gives acceptable predictions of the pesticides release from commercial CRFs in diffusion cells filled with quartz sand. This approach can be used to study the dynamics of the CRF-porous media interaction. It also could be implemented in fate of agricultural chemical models to include the effect of CRFs.


Subject(s)
Agrochemicals/analysis , Groundwater/chemistry , Pesticides/analysis , Water Purification/methods , Agrochemicals/chemistry , Filtration , Pesticides/chemistry , Solubility , Water Movements
15.
J Environ Sci Health B ; 48(9): 737-46, 2013.
Article in English | MEDLINE | ID: mdl-23688224

ABSTRACT

Modeling the pesticide wash-off by raindrops is important for predicting pesticide losses and the subsequent transport of pesticides to soil and in soil run-off. Three foliar-applied copper-based fungicide formulations, specifically the Bordeaux mixture (BM), copper oxychloride (CO), and a mixture of copper oxychloride and propylene glycol (CO-PG), were tested on potato (Solanum tuberosum L.) leaves using a laboratory raindrop simulator. The losses in the wash-off were quantified as both copper in-solution loss and copper as particles detached by the raindrops. The efficiency of the raindrop impact on the wash-off was modeled using a stochastic model based on the pesticide release by raindrops. In addition, the influence of the raindrop size, drop falling height, and fungicide dose was analyzed using a full factorial experimental design. The average losses per dose after 14 mm of dripped water for a crop with a leaf area index equal to 1 were 0.08 kg Cu ha(-1) (BM), 0.3 kg Cu ha(-1) (CO) and 0.47 kg Cu ha(-1) (CO-PG). The stochastic model was able to simulate the time course of the wash-off losses and to estimate the losses of both Cu in solution and as particles by the raindrop impacts. For the Cu-oxychloride fungicides, the majority of the Cu was lost as particles that detached from the potato leaves. The percentage of Cu lost increased with the decreasing raindrop size in the three fungicides for the same amount of dripped water. This result suggested that the impact energy is not a limiting factor in the particle detachment rate of high doses. The dosage of the fungicide was the most influential factor in the losses of Cu for the three formulations studied. The results allowed us to quantify the factors that should be considered when estimating the losses by the wash-off of copper-based fungicides and the inputs of copper to the soil by raindrop wash-off.


Subject(s)
Fungicides, Industrial/pharmacology , Plant Leaves/drug effects , Rain/chemistry , Soil Pollutants/chemistry , Solanum tuberosum/drug effects , Copper/chemistry , Fungicides, Industrial/chemistry , Kinetics , Models, Theoretical , Plant Leaves/growth & development , Solanum tuberosum/growth & development
16.
J Contam Hydrol ; 142-143: 75-81, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23143183

ABSTRACT

Pore water flow velocity can influence the processes involved in the contaminant transport between relative stagnant zones of porous media and their adjacent mobile zones. A particular case of special interest is the occurrence of high flow rates around the controlled release granules containing pesticides buried in soil. The release of the pesticides carbofuran and fenamiphos from commercial controlled release formulations (CRFs) was studied, comparing release tests in a finite volume of water with water flow release tests in saturated packed sand at different seepage velocities. For water release kinetics, the time taken for 50% of the pesticide to be released (T(50)) was 0.64 hours for carbofuran and 1.97 hours for fenamiphos. In general, the release rate was lower in the porous matrix than in the free water tests. The faster release rate for carbofuran was attributed to its higher water diffusivity. The seepage velocity has a strong influence on the pesticide release rate. The dominant release mechanism varies with the progress of release. The evolution of the mechanism is discussed on the basis of the successive steps that involve the moving boundary of the dissolution front of the pesticide inside the granule, the concentration gradient inside the granule and the flow boundary layer resistance to solute diffusion around the granule. The pore water velocity influences the overall release dynamics. Therefore, seepage velocity should be considered in pesticide release to evaluate the risk of pesticide leaching, especially in scenarios with fast infiltration.


Subject(s)
Carbofuran/chemistry , Organophosphorus Compounds/chemistry , Pesticides/chemistry , Porosity
17.
J Agric Food Chem ; 58(11): 6870-5, 2010 Jun 09.
Article in English | MEDLINE | ID: mdl-20465213

ABSTRACT

Understanding the mechanisms behind the transport of particulate contaminants in porous media is crucial with a view to evaluating their potential impact on the environment. Much of the copper used in agriculture is sprayed as colloidal copper oxychloride, and despite its potential environmentally adverse consequences, colloidal transport of particulate formulations of copper remains poorly understood. In this work, transport of copper colloids from a commercial copper oxychloride based fungicide formulation was studied by measuring its breakthrough in saturated quartz sand columns. The influence of ionic strength and flow rate on the test results suggests that retention of copper oxychloride based colloids is governed by weak forces. The particle deposition dynamics of the studied copper formulation was consistent with a two-site kinetic attachment model. The proposed colloid retention mechanisms are highly sensitive to the fungicide particle size. A comparison of our test results with reported data for other copper oxychloride wettable powder fungicide formulations revealed that transport of copper oxychloride is strongly influenced by its particle size. This is consistent with the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO), but only if binding occurs at the secondary minimum in the potential, where attachment is less favorable with small particles. The influence of particle size is also consistent with the results of previous studies where deposition was ascribed to retention at a secondary minimum. The mobility of colloidal formulations of these copper-based fungicides in saturated porous media increases with increasing particle size.


Subject(s)
Copper/chemistry , Fungicides, Industrial/chemistry , Silicon Dioxide/chemistry , Kinetics , Osmolar Concentration , Particle Size
18.
J Agric Food Chem ; 56(14): 5795-800, 2008 Jul 23.
Article in English | MEDLINE | ID: mdl-18576654

ABSTRACT

Foliar washoff causes a loss of copper-based pesticides sprayed on crops, leading to an increase in the number of applications and contamination of the soil with Cu. In field studies, the variables that determine the amount of Cu loss are difficult to control. An experimental setup based on a rotating shear device (RSD) was used to estimate the influence of physical factors in the loss of Cu due to washoff of three copper-based fungicides: copper oxychlorhide (CO), Bordeaux mixture (BM), and a mixture of copper oxychlorhide and propylene glycol (CO-PG). Full factorial designs were used to model the loss of Cu from fungicides sprayed on the polypropylene surface of the RSD. Variables in the experiments were rotation speed, wash water volume, and fungicide dose. Good reproducibility was obtained for Cu loss, with a coefficient of variation less than 8%. Mean Cu losses were 27.0, 33.0, and 13.5% of the copper applied in fungicide for the BM, CO, and CO-PG, respectively. Empirical equations were obtained to calculate Cu losses from the rotation speed, wash water volume, and dose, as well as their interactions. CO losses were consistent with a model of particle detachment in which such losses depended on a threshold boundary shear stress required to initiate particle motion. Also, percent CO losses were found to be significantly correlated with the linear momentum at the surface boundary. The momentum values obtained in the RSD tests were similar to those estimated for a rainfall event of 20 mm h(-1) lasting 10 min. The most important mechanism in the loss of CO was the erosion of Cu-bearing particles.


Subject(s)
Copper/analysis , Fungicides, Industrial/administration & dosage , Fungicides, Industrial/analysis , Soil Pollutants/analysis , Kinetics , Plant Leaves , Rain , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...