Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Foods ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38790851

ABSTRACT

Despite significant efforts from government and industry, enteric foodborne diseases continue to pose a substantial public health challenge worldwide [...].

2.
Animals (Basel) ; 13(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38067017

ABSTRACT

Salmonellosis is globally recognized as one of the leading causes of acute human bacterial gastroenteritis resulting from the consumption of animal-derived products, particularly those derived from the poultry and pig industry. Salmonella spp. is generally associated with self-limiting gastrointestinal symptoms, lasting between 2 and 7 days, which can vary from mild to severe. The bacteria can also spread in the bloodstream, causing sepsis and requiring effective antimicrobial therapy; however, sepsis rarely occurs. Salmonellosis control strategies are based on two fundamental aspects: (a) the reduction of prevalence levels in animals by means of health, biosecurity, or food strategies and (b) protection against infection in humans. At the food chain level, the prevention of salmonellosis requires a comprehensive approach at farm, manufacturing, distribution, and consumer levels. Proper handling of food, avoiding cross-contamination, and thorough cooking can reduce the risk and ensure the safety of food. Efforts to reduce transmission of Salmonella by food and other routes must be implemented using a One Health approach. Therefore, in this review we provide an update on Salmonella, one of the main zoonotic pathogens, emphasizing its relationship with animal and public health. We carry out a review on different topics about Salmonella and salmonellosis, with a special emphasis on epidemiology and public health, microbial behavior along the food chain, predictive microbiology principles, antimicrobial resistance, and control strategies.

3.
Foods ; 12(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37959118

ABSTRACT

A survey was performed to gather information on the processing steps, conditions, and practices employed by industries processing ready-to-eat (RTE) leafy vegetables in Argentina. A total of seven industries participated in the survey. A cluster analysis of the data obtained was performed to identify homogeneous groups among the participating industries. The data collected were used as inputs of two predictive microbiology models to estimate Salmonella concentrations after chlorine washing, during storage and distribution of final products, and to rank the different practices according to the final estimated Salmonella levels. Six different clusters were identified by evaluating the parameters, methods, and controls applied in each processing step, evidencing a great variability among industries. The disinfectant agent applied by all participating industries was sodium hypochlorite, though concentrations and application times differed among industries from 50 to 200 ppm for 30 to 110 s. Simulations using predictive models indicated that the reductions in Salmonella in RTE leafy vegetables would vary in the range of 1.70-2.95 log CFU/g during chlorine-washing depending on chlorine concentrations applied, washing times, and vegetable cutting size, which varied from 9 to 16 cm2 among industries. Moreover, Salmonella would be able to grow in RTE leafy vegetables during storage and distribution, achieving levels of up to 2 log CFU/g, considering the storage and transportation temperatures and times reported by the industries, which vary from 4 to 14 °C and from 18 to 30 h. These results could be used to prioritize risk-based sampling programs by Food Official Control or determine more adequate process parameters to mitigate Salmonella in RTE leafy vegetables. Additionally, the information gathered in this study is useful for microbiological risk assessments.

4.
Foods ; 12(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37048199

ABSTRACT

Listeria monocytogenes is a foodborne pathogen characterized by its psychrotrophic and ubiquitous nature as well as its ability to survive and proliferate in a wide range of harsh environments and foods [...].

5.
Food Res Int ; 167: 112451, 2023 May.
Article in English | MEDLINE | ID: mdl-37087200

ABSTRACT

Fresh-cut produces are often consumed uncooked, thus proper sanitation is essential for preventing cross contamination. The reduction and subsequent growth of Salmonella enterica sv Thompson were studied in pre-cut iceberg lettuce washed with simulated wash water (SWW), sodium hypochlorite (SH, free chlorine 25 mg/L), and peroxyacetic acid (PAA, 80 mg/L) and stored for 9 days under modified atmosphere at 9, 13, and 18 °C. Differences in reduction between SH and PAA were non-existent. Overall, visual quality, dehydration, leaf edge and superficial browning and aroma during storage at 9 °C were similar among treatments, but negative effects increased with temperature. These results demonstrated that PAA can be used as an effective alternative to chlorine for the disinfection of Salmonella spp. in fresh-cut lettuce. The growth of Salmonella enterica sv Thompson was successfully described with the Baranyi and Roberts growth model in the studied storage temperature range, and after treatment with SWW, chlorine, and PAA. Subsequently, predictive secondary models were used to describe the relationship between growth rates and temperature based on the models' family described by Belehrádek. Interestingly, the exposure to disinfectants biased growth kinetics of Salmonella during storage. Below 12 °C, growth rates in lettuce treated with disinfectant (0.010-0.011 log CFU/h at 9 °C) were lower than those in lettuce washed with water (0.016 log CFU/h at 9 °C); whereas at higher temperatures, the effect was the opposite. Thus, in this case, the growth rate values registered at 18 °C for lettuce treated with disinfectant were 0.048-0.054 log CFU/h compared to a value of 0.038 log CFU/h for lettuce treated with only water. The data and models developed in this study will be crucial to describing the wash-related dynamics of Salmonella in a risk assessment framework applied to fresh-cut produce, providing more complete and accurate risk estimates.


Subject(s)
Disinfectants , Peracetic Acid , Peracetic Acid/pharmacology , Lactuca , Chlorine/pharmacology , Food Microbiology , Colony Count, Microbial , Food Handling/methods , Salmonella , Disinfectants/pharmacology , Water
6.
Fungal Genet Biol ; 166: 103792, 2023 05.
Article in English | MEDLINE | ID: mdl-36996931

ABSTRACT

Polyamines are ubiquitous small organic cations, and their roles as regulators of several cellular processes are widely recognized. They are implicated in the key stages of the fungal life cycle. Ustilago maydis is a phytopathogenic fungus, the causal agent of common smut of maize and a model system to understand dimorphism and virulence. U. maydis grows in yeast form at pH 7 and it can develop its mycelial form in vitro at pH 3. Δodc mutants that are unable to synthesize polyamines, grow as yeast at pH 3 with a low putrescine concentration, and to complete its dimorphic transition high putrescine concentration is require. Δspd mutants require spermidine to grow and cannot form mycelium at pH 3. In this work, the increased expression of the mating genes, mfa1 and mfa2, on Δodc mutants, was related to high putrescine concentration. Global gene expression analysis comparisons of Δodc and Δspd U. maydis mutants indicated that 2,959 genes were differentially expressed in the presence of exogenous putrescine at pH 7 and 475 genes at pH 3. While, in Δspd mutant, the expression of 1,426 genes was affected by exogenous spermine concentration at pH 7 and 11 genes at pH 3. Additionally, we identified 28 transcriptional modules with correlated expression during seven tested conditions: mutant genotype, morphology (yeast, and mycelium), pH, and putrescine or spermidine concentration. Furthermore, significant differences in transcript levels were noted for genes in modules relating to pH and genotype genes involved in ribosome biogenesis, mitochondrial oxidative phosphorylation, N-glycan synthesis, and Glycosylphosphatidylinositol (GPI)-anchor. In summary, our results offer a valuable tool for the identification of potential factors involved in phenomena related to polyamines and dimorphism.


Subject(s)
Polyamines , Saccharomyces cerevisiae Proteins , Polyamines/metabolism , Putrescine/metabolism , Putrescine/pharmacology , Spermidine/metabolism , Ornithine Decarboxylase/genetics , Ornithine Decarboxylase/metabolism , Spermidine Synthase/genetics , Saccharomyces cerevisiae/genetics , Sex Characteristics , Gene Expression , Lipoproteins/genetics , Pheromones , Saccharomyces cerevisiae Proteins/genetics
7.
Foods ; 12(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36981050

ABSTRACT

In this study, the growth of six L. monocytogenes strains isolated from different fish products was quantified and modeled in smoked salmon pâté at a temperature ranging from 2 to 20 °C. The experimental data obtained for each strain was fitted to the primary growth model of Baranyi and Roberts to estimate the following kinetic parameters: lag phase (λ), maximum specific growth rate (µmax), and maximum cell density (Nmax). Then, the effect of storage temperature on the obtained µmax values was modeled by the Ratkowsky secondary model. In general, the six L. monocytogenes strains showed rapid growth in salmon pâté at all storage temperatures, with a relatively short lag phase λ, even at 2 °C. The growth behavior among the tested strains was similar at the same storage temperature, although significant differences were found for the parameters λ and µmax. Besides, the growth variations among the strains did not follow a regular pattern. The estimated secondary model parameter Tmin ranged from -4.25 to -3.19 °C. This study provides accurate predictive models for the growth of L. monocytogenes in fish pâtés that can be used in shelf life and microbial risk assessment studies. In addition, the models generated in this work can be implemented in predictive modeling tools and repositories that can be reliably and easily used by the fish industry and end-users to establish measures aimed at controlling the growth of L. monocytogenes in fish-based pâtés.

8.
Int J Food Microbiol ; 383: 109932, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36182750

ABSTRACT

Invasive listeriosis is a potentially fatal foodborne disease that according to this study may affect up to 32.9 % of the US population considered as increased risk and including people with underlying conditions and co-morbidities. Listeria monocytogenes has been scrutinized in research and surveillance programs worldwide in Ready-to-Eat (RTE) food commodities (RTE salads, deli meats, soft/semi-soft cheese, seafood) and frozen vegetables in the last 30 years with an estimated overall prevalence of 1.4-9.9 % worldwide (WD) and 0.5-3.8 % in the United States (US). Current L. monocytogenes control efforts have led to a prevalence reduction in the last 5 years of 4.9-62.9 % (WD) and 12.4-92.7 % (US). A quantitative risk assessment model was developed, estimating the probability of infection in the US susceptible population to be 10-10,000× higher than general population and the total number of estimated cases in the US was 1044 and 2089 cases by using the FAO/WHO and Pouillot dose-response models. Most cases were attributed to deli meats (>90 % of cases) followed by RTE salads (3.9-4.5 %), soft and semi-soft cheese and RTE seafood (0.5-1.0 %) and frozen vegetables (0.2-0.3 %). Cases attributed to the increased risk population corresponded to 96.6-98.0 % of the total cases with the highly susceptible population responsible for 46.9-80.1 % of the cases. Removing product lots with a concentration higher than 1 CFU/g reduced the prevalence of contamination by 15.7-88.3 % and number of cases by 55.9-100 %. Introducing lot-by-lot testing and defining allowable quantitative regulatory limits for low-risk RTE commodities may reduce the public health impact of L. monocytogenes and improve the availability of enumeration data.


Subject(s)
Listeria monocytogenes , Meat Products , Humans , United States/epidemiology , Public Health , Food Microbiology , Retrospective Studies , Risk Assessment , Vegetables
9.
Sensors (Basel) ; 22(9)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35590958

ABSTRACT

Resilient cities incorporate a social, ecological, and technological systems perspective through their trees, both in urban and peri-urban forests and linear street trees, and help promote and understand the concept of ecosystem resilience. Urban tree inventories usually involve the collection of field data on the location, genus, species, crown shape and volume, diameter, height, and health status of these trees. In this work, we have developed a multi-stage methodology to update urban tree inventories in a fully automatic way, and we have applied it in the city of Pamplona (Spain). We have compared and combined two of the most common data sources for updating urban tree inventories: Airborne Laser Scanning (ALS) point clouds combined with aerial orthophotographs, and street-level imagery from Google Street View (GSV). Depending on the data source, different methodologies were used to identify the trees. In the first stage, the use of individual tree detection techniques in ALS point clouds was compared with the detection of objects (trees) on street level images using computer vision (CV) techniques. In both cases, a high success rate or recall (number of true positive with respect to all detectable trees) was obtained, where between 85.07% and 86.42% of the trees were well-identified, although many false positives (FPs) or trees that did not exist or that had been confused with other objects were always identified. In order to reduce these errors or FPs, a second stage was designed, where FP debugging was performed through two methodologies: (a) based on the automatic checking of all possible trees with street level images, and (b) through a machine learning binary classification model trained with spectral data from orthophotographs. After this second stage, the recall decreased to about 75% (between 71.43 and 78.18 depending on the procedure used) but most of the false positives were eliminated. The results obtained with both data sources were robust and accurate. We can conclude that the results obtained with the different methodologies are very similar, where the main difference resides in the access to the starting information. While the use of street-level images only allows for the detection of trees growing in trafficable streets and is a source of information that is usually paid for, the use of ALS and aerial orthophotographs allows for the location of trees anywhere in the city, including public and private parks and gardens, and in many countries, these data are freely available.


Subject(s)
Ecosystem , Trees , Cities , Forests , Lasers
10.
Food Sci Technol Int ; 28(8): 672-682, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34726103

ABSTRACT

The main objective of the present study was to investigate the effect of storage temperature on aerobically stored chicken meat spoilage using the two-step and one-step modelling approaches involving different primary models namely the modified Gompertz, logistic, Baranyi and Huang models. For this purpose, growth data points of Pseudomonas spp. were collected from published studies conducted in aerobically stored chicken meat product. Temperature-dependent kinetic parameters (maximum specific growth rate 'µmax' and lag phase duration 'λ') were described as a function of storage temperature through the Ratkowsky model based on the different primary models. Then, the fitting capability of both modelling approaches was compared taking into account root mean square error, adjusted coefficient of determination (adjusted-R2) and corrected Akaike information criterion. The one-step modelling approach showed considerably improved fitting capability regardless of the used primary model. Finally, models developed from the one-step modelling approach were validated for the maximum growth rate data extracted from independent published literature using the statistical indexes Bias (Bf) and Accuracy (Af) factors. The best prediction capability was obtained for the Baranyi model with Bf and Af being very close to 1. The shelf-life of chicken meat as a function of storage temperature was predicted using both modelling approaches for the Baranyi model.


Subject(s)
Meat Products , Pseudomonas , Animals , Kinetics , Food Microbiology , Chickens , Models, Biological , Temperature , Meat , Colony Count, Microbial
11.
Int J Food Microbiol ; 363: 109491, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-34862040

ABSTRACT

Biopreservation is a strategy that has been extensively covered by the scientific literature from a variety of perspectives. However, the development of quantitative modelling approaches has received little attention, despite the usefulness of these tools for the food industry to assess the performance and to set the optimal application conditions. The objective of this study was to evaluate and model the interaction between the antilisteria strain Latilactobacillus sakei CTC494 (sakacin K producer) and Listeria monocytogenes in vacuum-packaged sliced cooked ham. Cooked ham was sliced under aseptic conditions and inoculated with L. monocytogenes CTC1034 and/or L. sakei CTC494 in monoculture and coculture at 10:10, 10:103 and 10:105 cfu/g ratios of pathogen:bioprotective cultures. Samples were vacuum packaged and stored at isothermal temperature (2, 5, 10 and 15 °C). The growth of the two bacteria was monitored by plate counting. The Logistic growth model was applied to estimate the growth kinetic parameters (N0, λ, µmax, Nmax). The effect of storage temperature was modelled using the hyperbola (λ) and Ratkowsky (µmax) models. The simple Jameson-effect model, its modifications including the Ncri and the interaction γ factor, and the predator-prey Lotka Volterra model were used to characterize the interaction between both microorganisms. Two additional experiments at non-isothermal temperature conditions were also carried out to assess the predictive performance of the developed models through the Acceptable Simulation Zone (ASZ) approach. In monoculture conditions, L. monocytogenes and L. sakei CTC494 grew at all temperatures. In coculture conditions, L. sakei CTC494 had an inhibitory effect on L. monocytogenes by lowering the Nmax, especially with increasing levels of L. sakei CTC494 and lowering the storage temperature. At the lowest temperature (2 °C) L. sakei CTC494 was able to completely inhibit the growth of L. monocytogenes when added at a concentration 3 and 5 Log higher than that of the pathogen. The inhibitory effect of the L. sakei CTC494 against L. monocytogenes was properly characterized and modelled using the modified Jameson-effect with interaction γ factor model. The developed interaction model was tested under non-isothermal conditions, resulting in ASZ values ≥83%. This study shows the potential of L. sakei CTC494 in the biopreservation of vacuum-packaged cooked ham against L. monocytogenes. The developed interaction model can be useful for the industry as a risk management tool to assess and set biopreservation strategies for the control of L. monocytogenes in cooked ham.


Subject(s)
Latilactobacillus sakei , Listeria monocytogenes , Meat Products , Colony Count, Microbial , Cooking , Food Microbiology , Food Packaging , Food Preservation , Models, Theoretical , Temperature , Vacuum
12.
Foods ; 10(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34945594

ABSTRACT

Films formulated with polyvinyl alcohol (PVA) (synthetic biopolymer) were reinforced with lignocellulose nanofibres (LCNF) from residues of vegetable production (natural biopolymer). The LCNF were obtained by mechanical and chemical pre-treatment by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) and added to the polyvinyl alcohol (polymer matrix) with the aim of improving the properties of the film for use in food packaging. The mechanical properties, crystallinity, thermal resistance, chemical structure, antioxidant activity, water barrier properties and optical properties (transparency and UV barrier), were evaluated. In general, with the addition of LCNF, an improvement in the studied properties of the films was observed. In terms of mechanical properties, the films reinforced with 7% LCNF TEMPO showed the best results for tensile strength, Young's modulus and elongation at break. At the same LCNF proportion, the thermal stability (Tmax) increased between 5.5% and 10.8%, and the antioxidant activity increased between 90.9% and 191.8%, depending on the raw material and the pre-treatment used to obtain the different LCNF. Finally, a large increase in UV blocking was also observed with the addition of 7% LCNF. In particular, the films with 7% of eggplant LCNF showed higher performance for Young's modulus, elongation at break, thermal stability and UV barrier. Overall, results demonstrated that the use of LCNF generated from agricultural residues represents a suitable bioeconomy approach able to enhance film properties for its application in the development of more sustainable and eco-friendly food packaging systems.

13.
Foods ; 10(7)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34359453

ABSTRACT

A biodegradable packaging film containing cellulose nanofibers from olive tree pruning, a by-product of olives production, was obtained using a solvent casting method. Nanocellulose was added to polyvinyl alcohol (PVA) to enhance the technological properties of the composite film as food packaging material. Nanocellulose was obtained from unbleached and bleached pulp through a mechanical and TEMPO pretreatment. Crystalline and chemical structure, surface microstructure, UV and gas barrier, optical, mechanical and antioxidant properties, as well as thermal stability were evaluated. Regarding optical properties, the UV barrier was increased from 6% for the pure PVA film to 50% and 24% for unbleached and bleached nanocellulose, respectively. The antioxidant capacity increased significantly in unbleached mechanical nanocellulose-films (5.3%) compared to pure PVA film (1.7%). In terms of mechanical properties, the tensile strength of the 5% unbleached mechanical nanocellulose films was significantly improved compared to the pure PVA film. Similarly, the 5% nanocellulose films had increased the thermal stability and improved barrier properties, reducing water vapor permeability by 38-59% and presenting an oxygen barrier comparable to aluminum layer and plastic films. Our results support the use of the developed films as a green alternative material for food packaging.

14.
Food Res Int ; 147: 110545, 2021 09.
Article in English | MEDLINE | ID: mdl-34399522

ABSTRACT

Understanding the role of food-related factors on the efficacy of protective cultures is essential to attain optimal results for developing biopreservation-based strategies. The aim of this work was to assess and model growth of Latilactobacillus sakei CTC494 and Listeria monocytogenes CTC1034, and their interaction, in two different ready-to-eat fish products (i.e., surimi-based product and tuna pâté) at 2 and 12 °C. The existing expanded Jameson-effect and a new expanded Jameson-effect model proposed in this study were evaluated to quantitatively describe the effect of microbial interaction. The inhibiting effect of the selected lactic acid bacteria strain on the pathogen growth was product dependent. In surimi product, a reduction of lag time of both strains was observed when growing in coculture at 2 °C, followed by the inhibition of the pathogen when the bioprotective L. sakei CTC494 reached the maximum population density, suggesting a mutualism-antagonism continuum phenomenon between populations. In tuna pâté, L. sakei CTC494 exerted a strong inhibition of L. monocytogenes at 2 °C (<0.5 log increase) and limited the growth at 12 °C (<2 log increase). The goodness-of-fit indexes indicated that the new expanded Jameson-effect model performed better and appropriately described the different competition patterns observed in the tested fish products. The proposed expanded competition model allowed for description of not only antagonistic but also mutualism-based interactions based on their influence on lag time.


Subject(s)
Lactobacillales , Listeria monocytogenes , Animals , Coculture Techniques , Fish Products , Microbial Interactions
15.
Food Microbiol ; 99: 103830, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34119115

ABSTRACT

The occurrence of various foodborne disease outbreaks linked to the consumption of cucumbers worldwide in the last years raised concerns regarding the survival ability of foodborne pathogens on this food matrix. This work aimed at evaluating and quantifying the survival of Escherichia coli O157:H7 and Salmonella spp. on cucumber surfaces. Cucumbers were inoculated with a 5-strain cocktail of each microorganism and kept at 25 °C. The survival ability of two green fluorescent protein (GFP) labelled Salmonella strains inoculated individually on cucumbers was also evaluated. The inoculated areas were swabbed at different time intervals (maximum of 72 h) and cells were enumerated by plate count method (log CFU/cm2). The population of both pathogens decreased significantly on cucumber surfaces over time. E. coli O157:H7 could only be recovered up to 8 h while Salmonella spp. could be detected up to 24 h. The GFP-labelled Salmonella strains showed similar behaviour on cucumbers compared to the evaluated Salmonella cocktail. Survival kinetic parameters were estimated by fitting the Weibull model to the survival data. The data obtained in this study indicate that despite of the rapid decrease on concentrations of both pathogens evaluated on cucumbers surfaces, strategies to avoid their contamination during the supply chain as well as proper cleaning and disinfection protocols must be put forward to mitigate both E. coli O57:H7 and Salmonella on cucumbers and therefore, to decrease the exposure of consumers to microbial hazards and to avoid cross-contamination events during distribution, retail and in domestic environments.


Subject(s)
Cucumis sativus/microbiology , Escherichia coli O157/growth & development , Salmonella/growth & development , Colony Count, Microbial , Food Microbiology , Fruit/microbiology , Microbial Viability
16.
Foods ; 10(5)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925051

ABSTRACT

Olea europaea L. leaves constitute a source of bioactive compounds with recognized benefits for both human health and technological purposes. In the present work, different extracts from olive leaves were obtained by the application of two extraction methods, Soxhlet and microwave-assisted extraction (MAE), and six solvents (distilled water, ethanolic and glycerol mixtures solvents). MAE was applied under 40, 60 and 80 °C for 3, 6.5 and 10 min. The effect of the extraction method, solvent and treatment factors (the latter in MAE) on the total phenol content (TPC), the antioxidant activity (AA) and the phenolic profile of the extracts were all evaluated. The extracts showed high values of TPC (up to 76.1 mg GAE/g DW) and AA (up to 78 mg TE/g DW), with oleuropein being the most predominant compound in all extracts. The Soxhlet extraction method exhibited better yields in TPC than in MAE, although both methods presented comparable AA values. The water MAE extract presented the strongest antimicrobial activity against five foodborne pathogens, with minimum inhibitory concentration (MIC) values ranging from 2.5 to 60 mg/mL. MAE water extract is proposed to be exploited in the food and nutraceutical industry in the frame of a sustainable economy.

17.
Plant Signal Behav ; 16(2): 1855016, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33356903

ABSTRACT

We have previously described that laboratory strains of Ustilago maydis, a fungal pathogen of maize and its ancestor teosinte, harbor an intracellular bacterium that enables the fungus to fix nitrogen. However, it is not clear whether other strains isolated from nature also harbor endosymbiotic bacteria, and whether these fix nitrogen for its host. In the present study, we isolated U. maydis strains from naturally infected maize. All the isolated strains harbored intracellular bacteria as determined by PCR amplification of the 16S rRNA gene, and some of them showed capacity to fix nitrogen. That these are truly bacterial endosymbionts were shown by the fact that, after thorough treatments with CuSO4 followed by serial incubations with antibiotics, the aforementioned bacterial gene was still amplified in treated fungi. In all, these data support the notion that U. maydis-bacterium endosymbiosis is a general phenomenon in this species.


Subject(s)
Basidiomycota/pathogenicity , Zea mays/microbiology , Host-Pathogen Interactions , Plant Diseases/microbiology , RNA, Ribosomal, 16S/genetics , Symbiosis/physiology , Zea mays/genetics
18.
Food Microbiol ; 94: 103649, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33279074

ABSTRACT

In this study, the bioprotective potential of Lactobacillus sakei CTC494 against Listeria monocytogenes CTC1034 was evaluated on vacuum packaged hot-smoked sea bream at 5 °C and dynamic temperatures ranging from 3 to 12 °C. The capacity of three microbial competition interaction models to describe the inhibitory effect of L. sakei CTC494 on L. monocytogenes was assessed based on the Jameson effect and Lotka-Volterra approaches. A sensory analysis was performed to evaluate the spoiling capacity of L. sakei CTC494 on the smoked fish product at 5 °C. Based on the sensory results, the bioprotection strategy against the pathogen was established by inoculating the product at a 1:2 ratio (pathogen:bioprotector, log CFU/g). The kinetic growth parameters of both microorganisms were estimated in mono-culture at constant storage (5 °C). In addition, the inhibition function parameters of the tested interaction models were estimated in co-culture at constant and dynamic temperature storage using as input the mono-culture kinetic parameters. The growth potential (δ log) of L. monocytogenes, in mono-culture, was 3.5 log on smoked sea bream during the experimental period (20 days). In co-culture, L. sakei CTC494 significantly reduced the capability of L. monocytogenes to grow, although its effectiveness was temperature dependent. The LAB strain limited the growth of the pathogen under storage at 5 °C (<1 log increase) and at dynamic profile 2 (<2 log increase). Besides, under storage at dynamic profile 1, the growth of L. monocytogenes was inhibited (<0.5 log increase). These results confirmed the efficacy of L. sakei CTC494 for controlling the pathogen growth on the studied fish product. The Lotka-Volterra competition model showed slightly better fit to the observed L. monocytogenes growth response than the Jameson-based models according to the statistical performance. The proposed modelling approach could support the assessment and establishment of bioprotective culture-based strategies aimed at reducing the risk of listeriosis linked to the consumption of RTE hot-smoked sea bream.


Subject(s)
Fish Products/microbiology , Food Preservation/methods , Latilactobacillus sakei/physiology , Listeria monocytogenes/growth & development , Animals , Antibiosis , Food Packaging , Listeria monocytogenes/physiology , Sea Bream/microbiology
19.
Molecules ; 25(14)2020 Jul 18.
Article in English | MEDLINE | ID: mdl-32708406

ABSTRACT

Horticultural plant residues (tomato, pepper, and eggplant) were identified as new sources for lignocellulose nanofibers (LCNF). Cellulosic pulp was obtained from the different plant residues using an environmentally friendly process, energy-sustainable, simple, and with low-chemical reagent consumption. The chemical composition of the obtained pulps was analyzed in order to study its influence in the nanofibrillation process. Cellulosic fibers were subjected to two different pretreatments, mechanical and TEMPO(2,2,6,6-Tetramethyl-piperidin-1-oxyl)-mediated oxidation, followed by high-pressure homogenization to produce different lignocellulose nanofibers. Then, LCNF were deeply characterized in terms of nanofibrillation yield, cationic demand, carboxyl content, morphology, crystallinity, and thermal stability. The suitability of each raw material to produce lignocellulose nanofibers was analyzed from the point of view of each pretreatment. TEMPO-mediated oxidation was identified as a more effective pretreatment to produce LCNF, however, it produces a decrease in the thermal stability of the LCNF. The different LCNF were added as reinforcing agent on recycled paperboard and compared with the improving produced by the industrial mechanical beating. The analysis of the papersheets' mechanical properties shows that the addition of LCNF as a reinforcing agent in the paperboard recycling process is a viable alternative to mechanical beating, achieving greater reinforcing effect and increasing the products' life cycles.


Subject(s)
Lignin/chemistry , Lignin/isolation & purification , Nanofibers/chemistry , Paper , Plant Extracts/chemistry , Capsicum/chemistry , Solanum lycopersicum/chemistry , Recycling , Solanum melongena/chemistry
20.
Foods ; 9(7)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32708923

ABSTRACT

The aim of this study was to model the growth and survival behaviour of Salmonella Reading and endogenous lactic acid bacteria on fresh pre-cut iceberg lettuce stored under modified atmosphere packaging for 10 days at different temperatures (4, 8 and 15 °C). The Baranyi and Weibull models were satisfactorily fitted to describe microbial growth and survival behaviour, respectively. Results indicated that lactic acid bacteria (LAB) could grow at all storage temperatures, while S. Reading grew only at 15 °C. Specific growth rate values (µmax) for LAB ranged between 0.080 and 0.168 h-1 corresponding to the temperatures 4 and 15 °C while for S. Reading at 15 °C, µmax = 0.056 h-1. This result was compared with published predictive microbiology models for other Salmonella serovars in leafy greens, revealing that predictions from specific models could be valid for such a temperature, provided they were developed specifically in lettuce regardless of the type of serovars inoculated. The parameter delta obtained from the Weibull model for the pathogen was found to be 16.03 and 18.81 for 4 and 8 °C, respectively, indicating that the pathogen underwent larger reduction levels at lower temperatures (2.8 log10 decrease at 4 °C). These data suggest that this Salmonella serovar is especially sensitive to low temperatures, under the assayed conditions, while showcasing that a correct refrigeration could be an effective measure to control microbial risk in commercial packaged lettuce. Finally, the microbiological data and models from this study will be useful to consider more specifically the behaviour of S. Reading during transport and storage of fresh-cut lettuce, elucidating the contribution of this serovar to the risk by Salmonella in leafy green products.

SELECTION OF CITATIONS
SEARCH DETAIL
...