Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Virus Res ; 339: 199255, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38389324

ABSTRACT

SARS-CoV-2's genetic plasticity has led to several variants of concern (VOCs). Here we studied replicative capacity for seven SARS-CoV-2 isolates (B.1, Alpha, Beta, Gamma, Delta, Zeta, and Omicron BA.1) in primary reconstituted airway epithelia (HAE) and lung-derived cell lines. Furthermore, to investigate the host range of Delta and Omicron compared to ancestral SARS-CoV-2, we assessed replication in 17 cell lines from 11 non-primate mammalian species, including bats, rodents, insectivores and carnivores. Only Omicron's phenotype differed in vitro, with rapid but short replication and efficient production of infectious virus in nasal HAEs, in contrast to other VOCs, but not in lung cell lines. No increased infection efficiency for other species was observed, but Delta and Omicron infection efficiency was increased in A549 cells. Notably replication in A549 and Calu3 cells was lower than in nasal HAE. Our results suggest better adaptation of VOCs towards humans, without an extended host range, and may be relevant to the search for the putative intermediate host and reservoirs prior to the pandemic.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , SARS-CoV-2 , Mammals , Cell Line
2.
J Surg Case Rep ; 2024(2): rjae018, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370588

ABSTRACT

A 59-year-old woman diagnosed with a Grade I chondrosarcoma in T7 underwent total en bloc vertebrectomy. Analysis of the surgical piece established diagnosis of a Grade 1 chondrosarcoma confined to T7. Surprisingly, an infiltration with diffuse large B-cell lymphoma was found. Systemic disease was ruled out and diagnosis was established as intracompartmental Grade 1 chondrosarcoma colliding with intraosseous extranodal diffuse large B-cell lymphoma. Resection of chondrosarcoma was considered complete and treatment with four cycles of RCHOP was indicated. Two years after surgery, the patient remains at complete metabolic response. To date, this is the first reported case of chondrosarcoma colliding with lymphoma. Although Grade 1 chondrosarcoma is typically managed with local control through complete surgical resection, the mentioned finding of the lymphoma indicated the need for systemic treatment with immunochemotherapy.

4.
Front Microbiol ; 11: 578328, 2020.
Article in English | MEDLINE | ID: mdl-33510715

ABSTRACT

Bivalve mollusk contamination by enteric viruses, especially human noroviruses (HuNoV) and hepatitis A virus (HAV), is a problem with health and economic implications. The aim of the study was the evaluation of the effect of heat treatment in clams (Tawera gayi) experimentally contaminated with HuNoV using a PMA-viability RTqPCR assay to minimize measurement of non-infectious viruses, and used HAV as a model to estimate infectivity loss. Spiked clams were immersed in water at 90°C to ensure that internal meat temperature was maintained above 90°C for at least 5 min. The treatment resulted in >3.89 ± 0.24 log10 TCID50/g reduction of infectious HAV, confirming inactivation. For HuNoV, RTqPCR assays showed log10 reductions of 2.96 ± 0.79 and 2.56 ± 0.56, for GI and GII, respectively, and the use of PMA resulted in an additional log10 reduction for GII, providing a better correlation with risk reduction. In the absence of a cell culture system which could be used to determine HuNoV infectivity reduction, a performance criteria based on PMA-RTqPCR log reduction could be used to evaluate food product safety. According to data from this study, heat treatments of clams which cause reductions >3.5 log10 for GII as measured by PMA-RTqPCR assay may be regarded as an acceptable inactivation treatment, and could be set as a performance criterion to test the effectiveness of other time-temperature inactivation processes.

5.
mSphere ; 4(6)2019 12 18.
Article in English | MEDLINE | ID: mdl-31852804

ABSTRACT

Human astroviruses (HAstV) are among the most common causative agents of viral gastroenteritis, especially in children, and extraintestinal manifestations have also been described. These viruses are transmitted by the fecal-oral route, implying that stool composition and the gut microbiota may impact their ability to remain infectious. For some enteric viruses, individual bacterial envelope components and other polysaccharide-containing molecules, which are abundant in stools, have been shown to enhance capsid stability. However, the role of the complex stool environment and, most importantly, the role of interindividual differences have been poorly studied. We used HAstV as a model to investigate how the stool environment in itself, its interindividual variability, and some specific stool components could affect HAstV stability and infectivity. Using two different HAstV genotypes, we found that stools as a whole modulate astrovirus infectivity not only in an individual-dependent manner but also in a manner that depends on the viral genotype. A virus-protective effect was observed after incubation with various Gram-positive and Gram-negative bacteria as well as with bacterial components, such as lipopolysaccharide and peptidoglycan. These results were further confirmed in human intestinal tissues, a more physiologically relevant system. Astrovirus infectivity was also preserved by mucin, a major component of intestinal mucus. We further confirmed that these components stabilize the viral capsid. These results show that although HAstV benefits from the stabilizing effect of fecal components, the complexity and variability of the stool composition and the multiple potential interactions may explain the interindividual differences in viral transmission observed in real life.IMPORTANCE To ensure transmission, enteric viruses must maintain their infectivity during the various environmental challenges that they face in transit within and between hosts. Increased knowledge of the factors affecting enteric virus survival may help to control their transmission. This study reveals that specific fecal bacterial components preserve classic human astrovirus infectivity by stabilizing viral particles. However, the outcomes of stool-virus interactions are very variable, ranging from protection to a reduction of viral infectivity, depending on the viral genotype and the individual from whom the stool has been collected. We show that the transmissibility of enteric viruses is dependent on the intestinal contents of the infected individual and highlight the complex multiple interactions that could explain the stochastic nature of enteric virus transmission in humans.


Subject(s)
Bacteria/growth & development , Feces/virology , Lipopolysaccharides/metabolism , Mamastrovirus/growth & development , Microbial Interactions , Microbial Viability/drug effects , Peptidoglycan/metabolism , Bacteria/chemistry , Capsid/drug effects , Feces/chemistry , Feces/microbiology , Mamastrovirus/drug effects , Mucins/metabolism
6.
Emerg Microbes Infect ; 8(1): 613-623, 2019.
Article in English | MEDLINE | ID: mdl-30999808

ABSTRACT

Fever is the leading cause of paediatric outpatient consultations in Sub-Saharan Africa. Although most are suspected to be of viral origin, a putative causative pathogen is not identified in over a quarter of these febrile episodes. Using a de novo assembly sequencing approach, we report the detection (15.4%) of dicistroviruses (DicV) RNA in sera collected from 692 febrile Tanzanian children. In contrast, DicV RNA was only detected in 1/77 (1.3%) plasma samples from febrile Tanzanian adults, suggesting that children could represent the primary susceptible population. Estimated viral load by specific quantitative real-time RT-PCR assay ranged from < 1.32E3 to 1.44E7 viral RNA copies/mL serum. Three DicV full-length genomes were obtained, and a phylogenetic analyse on the capsid region showed the presence of two clusters representing tentative novel genus. Although DicV-positive cases were detected throughout the year, a significantly higher positivity rate was observed during the rainy season. This study reveals that novel DicV RNA is frequently detected in the blood of Tanzanian children, paving the way for further investigations to determine if DicV possibly represent a new agent in humans.


Subject(s)
Fever/virology , RNA, Viral/blood , Virus Diseases/virology , Viruses/isolation & purification , Child , Child, Preschool , Cohort Studies , Female , Fever/blood , Humans , Infant , Male , Phylogeny , Polymerase Chain Reaction , Tanzania , Virus Diseases/blood , Virus Diseases/genetics , Viruses/classification
7.
PLoS Pathog ; 14(4): e1006962, 2018 04.
Article in English | MEDLINE | ID: mdl-29630666

ABSTRACT

Despite their genetic similarities, enteric and respiratory enteroviruses (EVs) have highly heterogeneous biophysical properties and cause a vast diversity of human pathologies. In vitro differences include acid sensitivity, optimal growth temperature and tissue tropism, which reflect a preferential in vivo replication in the respiratory or gastrointestinal tract and are thus key determinants of EV virulence. To investigate the underlying cause of these differences, we generated chimeras at the capsid-level between EV-D68 (a respiratory EV) and EV-D94 (an enteric EV). Although some chimeras were nonfunctional, EV-D94 with both the capsid and 2A protease or the capsid only of EV-D68 were both viable. Using this latter construct, we performed several functional assays, which indicated that capsid proteins determine acid sensitivity and tropism in cell lines and in respiratory, intestinal and neural tissues. Additionally, capsid genes were shown to also participate in determining the optimal growth temperature, since EV-D94 temperature adaptation relied on single mutations in VP1, while constructs with EV-D68 capsid could not adapt to higher temperatures. Finally, we demonstrate that EV-D68 maintains residual binding-capacity after acid-treatment despite a loss of infectivity. In contrast, non-structural rather than capsid proteins modulate the innate immune response in tissues. These unique biophysical insights expose another layer in the phenotypic diversity of one of world's most prevalent pathogens and could aid target selection for vaccine or antiviral development.


Subject(s)
Acids/chemistry , Capsid Proteins/metabolism , Enterovirus Infections/virology , Enterovirus/physiology , Intestines/virology , Neurons/virology , Respiratory System/virology , Capsid Proteins/genetics , Enterovirus/classification , Enterovirus Infections/genetics , Enterovirus Infections/metabolism , Humans , Temperature , Viral Tropism
8.
Sci Rep ; 6: 35962, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27808108

ABSTRACT

Virus production still is a challenging issue in antigen manufacture, particularly with slow-growing viruses. Deep-sequencing of genomic regions indicative of efficient replication may be used to identify high-fitness minority individuals suppressed by the ensemble of mutants in a virus quasispecies. Molecular breeding of quasispecies containing colonizer individuals, under regimes allowing more than one replicative cycle, is a strategy to select the fittest competitors among the colonizers. A slow-growing cell culture-adapted hepatitis A virus strain was employed as a model for this strategy. Using genomic selection in two regions predictive of efficient translation, the internal ribosome entry site and the VP1-coding region, high-fitness minority colonizer individuals were identified in a population adapted to conditions of artificially-induced cellular transcription shut-off. Molecular breeding of this population with a second one, also adapted to transcription shut-off and showing an overall colonizer phenotype, allowed the selection of a fast-growing population of great biotechnological potential.


Subject(s)
Genome, Viral , Genomics/methods , Quasispecies/genetics , Virus Replication , Viruses/growth & development , DNA Shuffling , Humans , Phenotype , Viruses/genetics
9.
Int J Mol Sci ; 16(4): 6842-54, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25815599

ABSTRACT

A universal vaccination program among preadolescents was implemented in Catalonia, Spain, during the period of 1999-2013 and its effectiveness has been clearly demonstrated by an overall significant attack rate reduction. However, reductions were not constant over time, and increases were again observed in 2002-2009 due to the occurrence of huge outbreaks. In the following years, in the absence of large outbreaks, the attack rate decreased again to very low levels. However, an increase of symptomatic cases in the <5 age group has recently been observed. This is an unexpected observation since children younger than 6 are mostly asymptomatic. Such a long vaccination campaign offers the opportunity to analyze not only the effectiveness of vaccination, but also the influence of the circulating genotypes on the incidence of hepatitis A among the different age groups. This study has revealed the emergence of genotype IC during a foodborne outbreak, the short-lived circulation of vaccine-escape variants isolated during an outbreak among the men-having-sex-with-men group, and the association of genotype IIIA with the increase of symptomatic cases among the very young. From a public health perspective, two conclusions may be drawn: vaccination is better at an early age, and the vaccination schedule must be complete and include all recommended vaccine doses.


Subject(s)
Disease Outbreaks/prevention & control , Hepatitis A Virus, Human/genetics , Hepatitis A/epidemiology , Hepatitis A/prevention & control , Mass Vaccination/methods , Adult , Child , Genotype , Genotyping Techniques , Hepatitis A/virology , Hepatitis A Virus, Human/classification , Humans , Molecular Sequence Data , Phylogeny , RNA, Viral/analysis , Spain/epidemiology , Young Adult
10.
Appl Environ Microbiol ; 80(20): 6499-505, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25107980

ABSTRACT

Food-borne hepatitis A outbreaks may be prevented by subjecting foods at risk of virus contamination to moderate treatments of high hydrostatic pressure (HHP). A pretreatment promoting hepatitis A virus (HAV) capsid-folding changes enhances the virucidal effect of HHP, indicating that its efficacy depends on capsid conformation. HAV populations enriched in immature capsids (125S provirions) are more resistant to HHP, suggesting that mature capsids (150S virions) are more susceptible to this treatment. In addition, the monoclonal antibody (MAb) K24F2 epitope contained in the immunodominant site is a key factor for the resistance to HHP. Changes in capsid folding inducing a loss of recognition by MAb K24F2 render more susceptible conformations independently of the origin of such changes. Accordingly, codon usage-associated folding changes and changes stimulated by pH-dependent breathings, provided they confer a loss of recognition by MAb K24F2, induce a higher susceptibility to HHP. In conclusion, the resistance of HAV to HHP treatments may be explained by a low proportion of 150S particles combined with a good accessibility of the epitope contained in the immunodominant site close to the 5-fold axis.


Subject(s)
Capsid/chemistry , Hepatitis A virus/physiology , Virus Inactivation , Capsid/immunology , Epitopes , Hydrostatic Pressure , Oxidoreductases/immunology
11.
Food Microbiol ; 40: 55-63, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24549198

ABSTRACT

A quadruplex Real-Time RT-PCR assay for the simultaneous quantitative detection of hepatitis A virus (HAV), norovirus (NoV) GI and GII, and mengovirus (used as process control for determination of the virus/nucleic acid extraction efficiency) has been developed. This multiplex assay has been comparatively evaluated with the individual monoplex assays and showed to be slightly less sensitive, with average ΔCq values of 0.90, 0.28 and 0.44 for HAV, NoV GI and NoV GII, respectively, in standard curves of viral RNA, or 0.32, 0.37 and 0.51 for the same viruses respectively, in naturally-contaminated samples. These ΔCq values were mostly negligible since it represented, in the worst case scenario, a loss of 0.43 log in genome copy numbers. The quadruplex assay shows similar theoretical detection limits than the monoplex assay for NoV GII, and 10 times higher for HAV and NoV GI. However, when naturally-contaminated food and water samples were tested, these theoretical detection thresholds were often exceeded and very low genome copy numbers (below the limit of detection) could be quantified. The quadruplex assay fulfills the requirements of the method developed by the European Committee on Standardization (CEN) for virus detection in selected foodstuffs with significant advantages in labor and reagent costs.


Subject(s)
Bivalvia/virology , Fresh Water/virology , Hepatitis A virus/isolation & purification , Multiplex Polymerase Chain Reaction/methods , Norovirus/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods , Shellfish/virology , Animals , Food Contamination/analysis , Hepatitis A virus/genetics , Norovirus/classification , Norovirus/genetics , Reverse Transcriptase Polymerase Chain Reaction/standards
12.
J Virol ; 88(9): 5029-41, 2014 May.
Article in English | MEDLINE | ID: mdl-24554668

ABSTRACT

UNLABELLED: Hepatitis A virus (HAV) has a highly biased and deoptimized codon usage compared to the host cell and fails to inhibit host protein synthesis. It has been proposed that an optimal combination of abundant and rare codons controls the translation speed required for the correct capsid folding. The artificial shutoff host protein synthesis results in the selection of variants containing mutations in the HAV capsid coding region critical for folding, stability, and function. Here, we show that these capsid mutations resulted in changes in their antigenicity; in a reduced stability to high temperature, low pH, and biliary salts; and in an increased efficacy of cell entry. In conclusion, the adaptation to cellular shutoff resulted in the selection of large-plaque-producing virus populations. IMPORTANCE: HAV has a naturally deoptimized codon usage with respect to that of its cell host and is unable to shut down the cellular translation. This fact contributes to the low replication rate of the virus, in addition to other factors such as the highly inefficient internal ribosome entry site (IRES), and explains the outstanding physical stability of this pathogen in the environment mediated by a folding-dependent highly cohesive capsid. Adaptation to artificially induced cellular transcription shutoff resulted in a redeoptimization of its capsid codon usage, instead of an optimization. These genomic changes are related to an overall change of capsid folding, which in turn induces changes in the cell entry process. Remarkably, the adaptation to cellular shutoff allowed the virus to significantly increase its RNA uncoating efficiency, resulting in the selection of large-plaque-producing populations. However, these populations produced much-debilitated virions.


Subject(s)
Adaptation, Biological , Capsid Proteins/metabolism , Codon/metabolism , Hepatitis A virus/physiology , Protein Biosynthesis , Capsid Proteins/genetics , DNA Mutational Analysis , Hepatitis A virus/genetics , Molecular Sequence Data , Mutant Proteins/metabolism , Protein Folding , Selection, Genetic , Sequence Analysis, DNA
13.
Future Microbiol ; 7(3): 331-46, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22393888

ABSTRACT

Hepatitis A is the most common infection of the liver worldwide and is fecal-orally transmitted. Its incidence tends to decrease with improvements in hygiene conditions but at the same time its severity increases. Hepatitis A virus is the causative agent of acute hepatitis in humans and belongs to the Hepatovirus genus in the Picornaviridae family, and it has very unique characteristics. This article reviews some molecular and biological properties that allow the virus to live in a very quiescent way and to build an extremely stable capsid that is able to persist in and out of the body. Additionally, the relationship between the genomic composition and the structural and antigenic properties of the capsid is discussed, and the potential emergence of antigenic variants is evaluated from an evolutionary perspective.


Subject(s)
Biological Evolution , Hepatitis A virus/genetics , Hepatitis A/virology , Animals , Hepatitis A/immunology , Hepatitis A/prevention & control , Hepatitis A virus/immunology , Hepatitis A virus/isolation & purification , Humans , Viral Hepatitis Vaccines/genetics , Viral Hepatitis Vaccines/immunology
14.
Int J Oncol ; 34(2): 457-63, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19148481

ABSTRACT

Prostate cancer is one of the most frequent malignancies in the Western world. The identification of additional molecular markers is needed to refine the diagnosis of prostate cancer and to develop more effective therapies. In order to identify molecular abnormalities involved in prostate cancer progression, we performed gene expression analysis of prostate cancer samples compared to matched normal tissue from the same patient using a cancer-related microarray. Amplified RNA was hybridized to a cDNA microarray containing 6386 genes and tissue microarrays were used to study protein expression levels. Using significance analysis of microarrays, we identified >1300 genes differentially expressed in prostate cancer compared to normal tissue. Forty-two of these genes were highly upregulated in prostate cancer while 169 were highly repressed. We found that the gene coding for tspan13 was upregulated >2-fold in 75% of the samples analyzed. Immunohistochemistry analysis of prostate cancer tissue microarrays showed that tspan13 is overexpressed in 80% of prostate cancer samples analyzed. We found that tspan13 expression inversely correlates with Gleason score (p=0.01) and PSA preoperative levels (p=0.11) and directly correlates with presence of prostatic intraepithelial neoplasia in tumor tissue (p=0.04). Moreover, we detected tspan13 expression in low-grade prostatic intraepithelial neoplasia. Thus, our results show that tspan13 is overexpressed in prostate cancer and its expression correlates with factors of favourable outcome. Therefore we suggest that tspan13 may have an important role in the progression of prostate cancer.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Membrane Proteins/genetics , Prostatic Neoplasms/genetics , DNA, Complementary/genetics , DNA, Neoplasm/genetics , Humans , Immunohistochemistry , Male , Oligonucleotide Array Sequence Analysis , Prostatic Neoplasms/pathology , Reverse Transcriptase Polymerase Chain Reaction , Tetraspanins , Treatment Outcome , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...