Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Front Immunol ; 15: 1385101, 2024.
Article in English | MEDLINE | ID: mdl-38725998

ABSTRACT

Background: Immunopathology in food allergy is characterized by an uncontrolled type 2 immune response and specific-IgE production. Recent studies have determined that group 2 innate lymphoid cells (ILC2) participate in the food allergy pathogenic mechanism and their severity. Our objective was to investigate the role of ILC2 in peach-allergic patients due to non-specific lipid transfer protein (Pru p 3) sensitization. Methods: The immune response in peripheral blood mononuclear cells was characterized in lipid transfer protein-allergic patients and healthy controls. We have analyzed the Pru p 3 uptake on ILC2, the expression of costimulatory molecules, and their involvement on the T-cell proliferative response and cytokine production under different experimental conditions: cytokines involved in group 2 innate lymphoid cell activation (IL-33 and IL-25), Pru p 3 as main food allergen, and the combination of both components (IL-33/IL-25+Pru p 3) using cell sorting, EliSpot, flow cytometry, and confocal microscopy. Results: Our results show that Pru p 3 allergen is taken up by group 2 innate lymphoid cells, regulating their costimulatory molecule expression (CD83 and HLA-DR) depending on the presence of Pru p 3 and its combination with IL-33/IL-25. The Pru p 3-stimulated ILC2 induced specific GATA3+Th2 proliferation and cytokine (IL-4, IL-5, and IL-13) production in lipid transfer protein-allergic patients in a cell contact-dependent manner with no changes in Tbet+Th1- and FOXP3+Treg cell differentiation. Conclusions: The results indicate that in lipid transfer protein-allergic patients, the responsible allergen, Pru p 3, interacts with group 2 innate lymphoid cells, promoting a Th2 cell response. Our results might be of interest in vivo, as they show a role of group 2 innate lymphoid cells as antigen-presenting cells, contributing to the development of food allergy. Consequently, group 2 innate lymphoid cells may be considered as potential therapeutic targets.


Subject(s)
Antigens, Plant , Carrier Proteins , Food Hypersensitivity , Immunity, Innate , Humans , Food Hypersensitivity/immunology , Female , Antigens, Plant/immunology , Carrier Proteins/immunology , Male , Adult , Cytokines/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Plant Proteins/immunology , Lymphocyte Activation/immunology , Young Adult , Middle Aged
2.
J Allergy Clin Immunol Pract ; 11(12): 3715-3723, 2023 12.
Article in English | MEDLINE | ID: mdl-37586474

ABSTRACT

BACKGROUND: Ibuprofen and other arylpropionic acid derivatives (APs) are among the most consumed nonsteroidal anti-inflammatory drugs worldwide at all age ranges; however, little is known about drug hypersensitivity reactions (DHRs) they induce. OBJECTIVE: To characterize in detail patients reporting DHRs to APs. METHODS: We prospectively evaluated patients with symptoms suggestive of AP-DHRs and analyzed their clinical characteristics, reported reactions, and diagnostic approaches. RESULTS: Six hundred sixty-two patients confirmed as hypersensitive to APs were included: 489 with cross-reactive reactions (CRs) (73.86%) and 173 with selective reactions (SRs) (26.13%). The percentage of subjects reporting reactions to ibuprofen and dexketoprofen was higher in CRs (P = .005 and P = .01, respectively), whereas naproxen and ketoprofen were more frequently involved in SRs (P = .0002 and P = .00001, respectively). The most frequent symptoms induced by ibuprofen, dexketoprofen, and naproxen were isolated angioedema and urticaria, combined or not with angioedema in both CRs and SRs. The result of nasal provocation test with lysine acetylsalicylate was positive in 156 cases (77.14% in patients showing exclusively respiratory symptoms, and in 68.18% of those with both cutaneous and respiratory involvement). To confirm diagnosis, drug provocation test with acetylsalicylic acid was required in 246 CR patients (50.3%), whereas in 28 SR patients (16.18%) drug provocation test with the culprit AP was required. CONCLUSIONS: Skin is the organ most commonly involved in AP-DHRs, with ibuprofen and dexketoprofen inducing most frequently CRs, and naproxen and ketoprofen SRs. More studies are necessary to clarify the underlying mechanism in DHRs induced by APs.


Subject(s)
Angioedema , Drug Hypersensitivity , Ketoprofen , Humans , Ibuprofen/adverse effects , Ketoprofen/adverse effects , Naproxen/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Drug Hypersensitivity/diagnosis , Angioedema/diagnosis
5.
J Asthma Allergy ; 15: 1359-1367, 2022.
Article in English | MEDLINE | ID: mdl-36189188

ABSTRACT

Background: Allergy can start at early ages, with genetic and environmental factors contributing to its development. Aim: The study aimed to describe the pattern of sensitisation and allergy in children and adolescents of Spanish versus Moroccan ancestry but born in the same rural area of Spain. Methods: Participants were children and adolescents (3-19 years) of Spanish or Moroccan descent, born in Blanca, Murcia (Spain). A detailed questionnaire was completed, and skin prick tests were performed to assess reactions to the most prevalent pollen allergens (O. europaea, P. pratense, S. kali, C. arizonica, P. acerifolia, A. vulgaris and P. judaica) plus molecular components Ole e 1 and Ole e 7. The association with ancestry was verified by studying participants' parents. Results: The study included 693 participants: 48% were aged 3-9 years and 52%, 10-19 years; 80% were of Spanish descent and 20% of Moroccan descent. Sensitisation to Olea europaea, Phleum pratense, Salsola kali and Cupressus arizonica were slightly higher in the Spanish group. The only significant differences were observed in sensitisation to Ole e 1 (p=0.02). Rhinitis, conjunctivitis, and rhinitis plus asthma were significantly higher in the Spanish group (p=0.03, p=0.02, p=0.007, respectively). The sensitisation pattern differed between Spanish and Moroccan parents, and between Moroccan parents and their children, but not between Spanish parents and their children. Conclusion: Both environment and ancestry may influence sensitisation and symptoms. Although the environment seems to have a stronger influence, other factors may contribute to the differences in prevalence and in the clinical entities in people of Spanish versus Moroccan descent.

6.
Int J Mol Sci ; 23(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35805992

ABSTRACT

Diagnosis of type I hypersensitivity reactions (IgE-mediated reactions) to penicillins is based on clinical history, skin tests (STs), and drug provocation tests (DPTs). Among in vitro complementary tests, the fluoro-enzyme immunoassay (FEIA) ImmunoCAP® (Thermo-Fisher, Waltham, MA, USA) is the most widely used commercial method for detecting drug-specific IgE (sIgE). In this study, we aimed to analyze the utility of ImmunoCAP® for detecting sIgE to penicillin G (PG) and amoxicillin (AX) in patients with confirmed penicillin allergy. The study includes 139 and 250 patients evaluated in Spain and Italy, respectively. All had experienced type I hypersensitivity reactions to penicillins confirmed by positive STs. Additionally, selective or cross-reactive reactions were confirmed by DPTs in a subgroup of patients for further analysis. Positive ImmunoCAP® results were 39.6% for PG and/or AX in Spanish subjects and 52.4% in Italian subjects. When only PG or AX sIgE where analyzed, the percentages were 15.1% and 30.4%, respectively, in Spanish patients; and 38.9% and 46% in Italian ones. The analysis of positive STs showed a statistically significant higher percentage of positive STs to PG determinants in Italian patients. False-positive results to PG (16%) were detected in selective AX patients with confirmed PG tolerance. Low and variable sensitivity values observed in a well-defined population with confirmed allergy diagnosis, as well as false-positive results to PG, suggest that ImmunoCAP® is a diagnostic tool with relevant limitations in the evaluation of subjects with type I hypersensitivity reactions to penicillins.


Subject(s)
Drug Hypersensitivity , Hypersensitivity, Immediate , Amoxicillin , Drug Hypersensitivity/diagnosis , Humans , Hypersensitivity, Immediate/diagnosis , Immunoenzyme Techniques , Immunoglobulin E/analysis , Penicillin G , Penicillins/adverse effects , Skin Tests
7.
Carbohydr Res ; 517: 108580, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35561476

ABSTRACT

Food allergy induced by lipid transfer proteins (LTPs) of Rosacea fruit family, such as peach, is becoming an important health problem in the Mediterranean area. Current treatments, such as allergen specific immunotherapy (AIT) with allergenic extracts show promising, but in many cases, they need an improvement in homogeneity, availability and induction of tolerant responses. Peptide-based vaccines containing adjuvants, such as carbohydrates for C-type lectin receptors (CLRs) are presented as an alternative approach. In this work, we have prepared fucosylated glycodendropeptides (GDPs) functionalized with Pru p 3 peptides via click chemistry. These GDPs, DnFuc9Prup3, induced changes in moDC maturation and lymphocyte proliferation in food allergic patients, indicating specific recognition via DC-SIGN receptor. From these data, D4Fuc9Prup3 can be considered a promising candidate for specific immunotherapy development.


Subject(s)
Antigens, Plant , Plant Proteins , Allergens , Antigens, Plant/metabolism , Cell Adhesion Molecules , Dendritic Cells/metabolism , Humans , Lectins, C-Type/metabolism , Plant Proteins/metabolism , Receptors, Cell Surface
8.
Allergy ; 77(10): 3070-3083, 2022 10.
Article in English | MEDLINE | ID: mdl-35611454

ABSTRACT

BACKGROUND: Immediate drug hypersensitivity reactions (IDHRs) to clavulanic acid (CLV) have increased in the last decades due to a higher consumption alongside amoxicillin (AX). Due to its chemical instability, diagnostic procedures to evaluate IDHRs to CLV are difficult, and current in vitro assays do not have an optimal sensitivity. The inclusion of the specific metabolites after CLV degradation, which are efficiently recognised by the immune system, could help to improve sensitivity of in vitro tests. METHODS: Recognition by dendritic cells (DCs) of CLV and the synthetic analogues of two of its hypothesised antigenic determinants (ADs) was evaluated by flow cytometry in 27 allergic patients (AP) and healthy controls (HC). Their ability to trigger the proliferation of T cells was also analysed by flow cytometry. RESULTS: The inclusion of synthetic analogues of CLV ADs, significantly increased the expression of maturation markers on DCs from AP compared to HC. A different recognition pattern could be observed with each AD, and, therefore, the inclusion of both ADs achieves an improved sensitivity. The addition of synthetic ADs analogues increased the proliferative response of CD4+ Th2 compared to the addition of native CLV. The combination of results from both ADs increased the sensitivity of proliferative assays from 19% to 65% with a specificity higher than 90%. CONCLUSIONS: Synthetic ADs from CLV are efficiently recognised by DCs with ability to activate CD4+ Th2 cells from AP. The combination of analogues from both ADs, significantly increased the sensitivity of DC maturation and T-cell proliferation compared to native CLV.


Subject(s)
Drug Hypersensitivity , Hypersensitivity, Immediate , Amoxicillin , Cell Proliferation , Clavulanic Acid/adverse effects , Dendritic Cells , Epitopes/metabolism , Humans
9.
Int J Mol Sci ; 23(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35563370

ABSTRACT

Plant-food allergy is an increasing problem, with nonspecific lipid transfer proteins (nsLTPs) triggering mild/severe reactions. Pru p 3 is the major sensitizer in LTP food allergy (FA). However, in vivo and in vitro diagnosis is hampered by the need for differentiating between asymptomatic sensitization and allergy with clinical relevance. The basophil activation test (BAT) is an ex vivo method able to identify specific IgE related to the allergic response. Thus, we aimed to establish the value of BAT in a precise diagnosis of LTP-allergic patients. Ninety-two individuals with peach allergy sensitized to LTP, Pru p 3, were finally included, and 40.2% of them had symptoms to peanut (n = 37). In addition, 16 healthy subjects were recruited. BAT was performed with Pru p 3 and Ara h 9 (peanut LTP) at seven ten-fold concentrations, and was evaluated by flow cytometry, measuring the percentage of CD63 (%CD63+) and CD203c (%CD203chigh) cells, basophil allergen threshold sensitivity (CD-Sens), and area under the dose−response curve (AUC). Significant changes in BAT parameters (%CD63+ and %CD203chigh) were found between the controls and patients. However, comparisons for %CD63+, %CD203chigh, AUC, and CD-Sens showed similar levels among patients with different symptoms. An optimal cut-off was established from ROC curves, showing a significant positive percentage of BAT in patients compared to controls and great values of sensitivity (>87.5%) and specificity (>85%). In addition, BAT showed differences in LTP-allergic patients tolerant to peanut using its corresponding LTP, Ara h 9. BAT can be used as a potential diagnostic tool for identifying LTP allergy and for differentiating peanut tolerance, although neither reactivity nor sensitivity can distinguish the severity of the clinical symptoms.


Subject(s)
Basophil Degranulation Test , Food Hypersensitivity , Allergens/metabolism , Arachis , Basophil Degranulation Test/methods , Basophils , Food Hypersensitivity/diagnosis , Food Hypersensitivity/metabolism , Humans , Immunoglobulin E/metabolism
10.
PLoS One ; 16(8): e0255305, 2021.
Article in English | MEDLINE | ID: mdl-34411133

ABSTRACT

Peach tree allergens are present in fruit, pollen, branches, and leaves, and can induce systemic, respiratory, cutaneous, and gastrointestinal symptoms. We studied the capacity of peach fruit/Pru p 1, Pru p 3, Pru p 4, Pru p 7 and peach pollen/Pru p 9 for inducing symptoms following oral or respiratory exposure in a large group of subjects. We included 716 adults (aged 21 to 83 y.o.) exposed to peach tree pollen and fruit intake in the study population. Participants completed a questionnaire and were skin tested with a panel of inhalant and food allergens, including peach tree pollen, Pru p 9 and peach fruit skin extract. Immunoglobulin E antibodies (SIgE) to Pru p 1, Pru p 3, Pru p 4 and Pru p 7 were quantified. Sensitised subjects underwent oral food challenge with peach fruit and nasal provocation test with peach tree pollen and Pru p 9. The prevalence of sensitisation to peach fruit was 5% and most of these had SIgE to Pru p 3, with a very low proportion to Pru p 4 SIgE and no SIgE to Pru p 1 and Pru p 7. In only 1.8%, anaphylaxis was the clinical entity induced. Cases with positive skin tests to peach and SIgE to Pru p 3 presented a good tolerance after oral challenge with peach fruit. The prevalence of skin sensitisation to peach tree pollen was 22%, with almost half recognising Pru p 9. This induced respiratory symptoms in those evaluated by nasal provocation. In a large population group exposed to peach fruit and peach tree pollen, most individuals were tolerant, even in those with SIgE to Pru p 3. A positive response to Pru p 9 was associated with respiratory allergy.


Subject(s)
Population Groups , Prunus persica , Adult , Allergens , Food Hypersensitivity , Humans , Middle Aged , Young Adult
11.
Foods ; 10(5)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068667

ABSTRACT

Food allergy is an increasing problem worldwide, with strict avoidance being classically the only available reliable treatment. The main objective of this review is to cover the latest information about the tools available for the diagnosis and treatment of food allergies. In recent years, many efforts have been made to better understand the humoral and cellular mechanisms involved in food allergy and to improve the strategies for diagnosis and treatment. This review illustrates IgE-mediated food hypersensitivity and provides a current description of the diagnostic strategies and advances in different treatments. Specific immunotherapy, including different routes of administration and new therapeutic approaches, such as hypoallergens and nanoparticles, are discussed in detail. Other treatments, such as biologics and microbiota, are also described. Therefore, we conclude that although important efforts have been made in improving therapies for food allergies, including innovative approaches mainly focusing on efficacy and safety, there is an urgent need to develop a set of basic and clinical results to help in the diagnosis and treatment of food allergies.

12.
Front Pharmacol ; 12: 667824, 2021.
Article in English | MEDLINE | ID: mdl-33995098

ABSTRACT

Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the main triggers of drug hypersensitivity reactions, probably due to their high consumption worldwide. The most frequent type of NSAID hypersensitivity is NSAID cross-hypersensitivity, in which patients react to NSAIDs from different chemical groups in the absence of a specific immunological response. The underlying mechanism of NSAID cross-hypersensitivity has been linked to cyclooxygenase (COX)-1 inhibition causing an imbalance in the arachidonic acid pathway. Despite NSAID-induced acute urticaria/angioedema (NIUA) being the most frequent clinical phenotype, most studies have focused on NSAID-exacerbated respiratory disease. As NSAID cross-hypersensitivity reactions are idiosyncratic, only appearing in some subjects, it is believed that individual susceptibility is under the influence of genetic factors. Although associations with polymorphisms in genes from the AA pathway have been described, no previous study has evaluated the potential role of cytosolic phospholipase A2 (cPLA2) variants. This enzyme catalyzes the initial hydrolysis of membrane phospholipids to release AA, which can be subsequently metabolized into eicosanoids. Here, we analyzed for the first time the overall genetic variation in the cPLA2 gene (PLA2G4A) in NIUA patients. For this purpose, a set of tagging single nucleotide polymorphisms (tagSNPs) in PLA2G4A were selected using data from Europeans subjects in the 1,000 Genomes Project, and genotyped with the iPlex Sequenom MassArray technology. Two independent populations, each comprising NIUA patients and NSAID-tolerant controls, were recruited in Spain, for the purposes of discovery and replication, comprising a total of 1,128 individuals. Fifty-eight tagSNPs were successfully genotyped in the discovery cohort, of which four were significantly associated with NIUA after Bonferroni correction (rs2049963, rs2064471, rs12088010, and rs12746200). These polymorphisms were then genotyped in the replication cohort: rs2049963 was associated with increased risk for NIUA after Bonferroni correction under the dominant and additive models, whereas rs12088010 and rs12746200 were protective under these two inheritance models. Our results suggest a role for PLA2G4A polymorphisms in NIUA. However, further studies are required to replicate our findings, elucidate the mechanistic role, and evaluate the participation of PLA2G4A variants in other phenotypes induced by NSAID cross-hypersensitivity.

14.
Front Pharmacol ; 11: 503, 2020.
Article in English | MEDLINE | ID: mdl-32425774

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs), the most commonly prescribed and consumed medicines worldwide, are the main triggers of drug hypersensitivity reactions (DHRs). The underlying mechanisms of NSAID-DHRs may be related to COX-1 inhibition (cross-hypersensitivity reactions, CRs) or to immunological recognition (selective reactions, SRs), being the latter remarkably less studied. SRs include those usually appearing within the first hour after drug intake (single-NSAID-induced urticaria/angioedema or anaphylaxis, SNIUAA), and those usually occurring more than 24 h after (single-NSAID-induced delayed reactions, SNIDR). We have evaluated the largest series of patients with SRs, analyzing the number of episodes and drugs involved, the latency for reaction onset, the clinical entities, among other variables, as well as the value of available diagnostic methods. Globally, pyrazolones and arylpropionics were the most frequent culprits (39.3% and 37.3%, respectively). Pyrazolones were the most frequent triggers in SNIUAA and arylpropionics in SNIDR. Urticaria was the most common clinical entity in SNIUAA (42.4%) followed by anaphylaxis (33.3%); whereas SNIDR induced mostly fixed drug eruption (41.1%) and maculopapular exanthema (32.6%). The percentage of patients diagnosed by clinical history was higher in SNIUAA compared with SNIDR (62.7% versus 35.3%, p = 0.00015), whereas the percentage of those diagnosed by skin tests was higher in SNIDR than in SNIUAA (47.1% versus 22.8%, p = 0.00015). Drug provocation test with the culprit was performed in 67 SNIUAA (14.5%) and in 9 SNIDR (17.6%) patients. Our results may be of interest not only for allergologists but also for other clinicians dealing with these drugs, and can be useful for the correct identification of subjects experiencing DHRs to NSAIDs, and for avoiding mislabeling. Moreover, as NSAIDs are highly consumed worldwide, our results may be of interest for evaluating other populations exposed to these drugs.

15.
J Allergy Clin Immunol Pract ; 8(8): 2707-2714.e2, 2020 09.
Article in English | MEDLINE | ID: mdl-32376487

ABSTRACT

BACKGROUND: Quinolones are the second most frequent cause of hypersensitivity reactions (HSRs) to antibiotics. A marked increase in the number of patients with HSRs to quinolones has been detected. OBJECTIVE: To describe the clinical characteristics of patients with HSRs to quinolones and present methods for their diagnosis. METHODS: Patients attending the allergy unit due to reactions suggestive of HSRs to quinolones were prospectively evaluated between 2005 and 2018. Diagnosis was achieved using clinical history, skin tests (STs), basophil activation tests (BATs), and drug provocation tests (DPTs) if ST and BAT results were negative. RESULTS: We included 128 subjects confirmed as having HSRs to quinolones and 42 found to be tolerant. Anaphylaxis was the most frequent entity in immediate HSRs and was most commonly induced by moxifloxacin. Patients were evaluated a median of 150 days (interquartile range, 60-365 days) after the reaction. Of patients who underwent ST and BAT, 40.7% and 70%, respectively, were positive. DPT with a quinolone was performed in 48 cases, giving results depending on the culprit drug: when moxifloxacin was involved, 62.5% of patients gave a positive DPT result to ciprofloxacin, whereas none reacted to levofloxacin. The risk of HSR was 96 times higher in subjects who reported moxifloxacin-induced anaphylaxis and 18 times higher in those reporting immediate reactions compared with clinical entities induced by quinolones other than moxifloxacin and nonimmediate reactions. CONCLUSIONS: The diagnosis of HSR to quinolones is complex. The use of clinical history is essential as a first step. BAT shows higher sensitivity than STs. DPTs can be useful for finding safe alternative quinolones.


Subject(s)
Drug Hypersensitivity , Hypersensitivity, Immediate , Quinolones , Drug Hypersensitivity/diagnosis , Drug Hypersensitivity/epidemiology , Humans , Hypersensitivity, Immediate/diagnosis , Hypersensitivity, Immediate/epidemiology , Levofloxacin , Skin Tests
16.
Allergy ; 75(7): 1689-1698, 2020 07.
Article in English | MEDLINE | ID: mdl-31995231

ABSTRACT

BACKGROUND: Allergic rhinitis (AR) and local allergic rhinitis (LAR) are defined by nasal reactivity to aeroallergens with and without positive skin prick test (SPT), respectively. In this study, we aimed to investigate whether both types of allergen-specific reactivity can coexist in the same individual. METHODS: Forty-eight patients with perennial rhinitis symptoms and positive SPT with seasonal allergens only (discrepant group) were subjected to consecutive nasal allergen challenges (NAC) with seasonal (NAC-S) and perennial allergens (NAC-P). A nasal lavage was collected before and after the NACs to measure eosinophil cationic protein (ECP). A basophil activation test (BAT) with seasonal and/or perennial allergens was performed in ten patients from the discrepant group and in six seasonal allergic rhinitis (SAR), eight perennial local allergic rhinitis (LAR), six nonallergic rhinitis (NAR), and six healthy control (HC) individuals. RESULTS: All patients in the discrepant group tested positive in the NAC-S, and 41 of them (85.4%), also in the NAC-P (group A). Conversely, seven patients tested negative in the NAC-P (group B). ECP in the nasal lavage increased after the NAC-P in the group A (P = .004), but not in the group B. The BAT with seasonal allergens was positive in 100% of SAR and group A cases, whereas the BAT with perennial allergens was positive in 37.5% and 60% of LAR and group A cases, respectively. All NAR and HC subjects tested negative for the BAT. CONCLUSION: This study shows that nasal reactivity to aeroallergens with and without positive SPT can coexist in the same patient. We propose the term dual allergic rhinitis for this rhinitis phenotype.


Subject(s)
Rhinitis, Allergic, Seasonal , Rhinitis, Allergic , Allergens , Humans , Immunoglobulin E , Nasal Provocation Tests , Rhinitis, Allergic/diagnosis , Rhinitis, Allergic, Seasonal/complications , Rhinitis, Allergic, Seasonal/diagnosis
18.
Front Pharmacol ; 11: 594427, 2020.
Article in English | MEDLINE | ID: mdl-33658935

ABSTRACT

Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most highly consumed drugs worldwide and the main triggers of drug hypersensitivity reactions. The most frequent reaction, named cross-reactive NSAID-hypersensitivity, is due to the pharmacological activity of these drugs by blocking the cyclooxygenase-1 enzyme. Such inhibition leads to cysteinyl-leukotriene synthesis, mainly LTE4, which are responsible for the reaction. Although the complete molecular picture of the underlying mechanisms remains elusive, the participation of platelet-adherent leukocytes (CD61+) and integrins have been described for NSAID-exacerbated respiratory disease (NERD). However, there is a lack of information concerning NSAID-induced urticaria/angioedema (NIUA), by far the most frequent clinical phenotype. Here we have evaluated the potential role of CD61+ leukocytes and integrins (CD18, CD11a, CD11b, and CD11c) in patients with NIUA, and included the other two phenotypes with cutaneous involvement, NSAID-exacerbated cutaneous disease (NECD) and blended reactions (simultaneous skin and airways involvement). A group NSAID-tolerant individuals was also included. During the acute phase of the reaction, the three clinical phenotypes showed increased frequencies of CD61+ neutrophils, eosinophils, and monocytes compared to controls, which correlated with urinary LTE4 levels. However, no correlation was found between these variables at basal state. Furthermore, increased expressions of CD18 and CD11a were found in the three CD61+ leukocytes subsets in NIUA, NECD and blended reactions during the acute phase when compared with CD61-leukocyte subpopulations. During the acute phase, CD61+ neutrophils, eosinophils and monocytes showed increased CD18 and CD11a expression when compared with CD61+ leukocytes at basal state. No differences were found when comparing controls and CD61+ leukocytes at basal state. Our results support the participation of platelet-adherent leukocytes and integrins in cutaneous cross-hypersensitivity to NSAIDs and provide a link between these cells and arachidonic acid metabolism. Our findings also suggest that these reactions do not involve a systemic imbalance in the frequency of CD61+ cells/integrin expression or levels of LTE4, which represents a substantial difference to NERD. Although further studies are needed, our results shed light on the molecular basis of cutaneous cross-reactive NSAID-hypersensitivity, providing potential targets for therapy through the inhibition of platelet-leukocyte interactions.

19.
Allergy ; 75(3): 561-575, 2020 03.
Article in English | MEDLINE | ID: mdl-31469167

ABSTRACT

Nonsteroidal anti-inflammatory drugs (NSAIDs), the medications most commonly used for treating pain and inflammation, are the main triggers of drug hypersensitivity reactions. The latest classification of NSAIDs hypersensitivity by the European Academy of Allergy and Clinical Immunology (EAACI) differentiates between cross-hypersensitivity reactions (CRs), associated with COX-1 inhibition, and selective reactions, associated with immunological mechanisms. Three phenotypes fill into the first group: NSAIDs-exacerbated respiratory disease, NSAIDs-exacerbated cutaneous disease and NSAIDs-induced urticaria/angioedema. Two phenotypes fill into the second one: single-NSAID-induced urticaria/angioedema/anaphylaxis and single-NSAID-induced delayed reactions. Diagnosis of NSAIDs hypersensitivity is hampered by different factors, including the lack of validated in vitro biomarkers and the uselessness of skin tests. The advances achieved over recent years recommend a re-evaluation of the EAACI classification, as it does not consider other phenotypes such as blended reactions (coexistence of cutaneous and respiratory symptoms) or food-dependent NSAID-induced anaphylaxis. In addition, it does not regard the natural evolution of phenotypes and their potential interconversion, the development of tolerance over time or the role of atopy. Here, we address these topics. A state of the art on the underlying mechanisms and on the approaches for biomarkers discovery is also provided, including genetic studies and available information on transcriptomics and metabolomics.


Subject(s)
Angioedema , Drug Hypersensitivity , Pharmaceutical Preparations , Urticaria , Angioedema/chemically induced , Angioedema/diagnosis , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Drug Hypersensitivity/diagnosis , Drug Hypersensitivity/etiology , Humans , Skin Tests , Urticaria/chemically induced , Urticaria/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...