Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; : 1-12, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35300749

ABSTRACT

Three independent analysis methods were developed to investigate the distribution of solid mass in foams analyzed by X-ray tomography with effective pixel sizes larger than the thickness of the solid network (sub-pixel conditions). Validation of the methods was achieved by a comparison with the results obtained employing high-resolution tomography for the same set of foams. The foams showed different solid mass distribution, which varied from being preferentially located on the edges, with a fraction of mass in the struts nearing 0.6, to materials in which the fraction of mass in the struts was low, under 0.15. In all cases, the accuracy of the proposed approaches was greater for materials with a higher fraction of mass in the struts. The method based on deconvolution of the attenuation probability density function yielded the closest results to the high-resolution characterizations. In contrast, analysis of the solid matrix thickness distribution after watershed segmentation, and binarization of high thickness regions (struts segmentation) required normalization through macroscopic measurements and revealed higher deviations with respect to the high-resolution results. However, segmentation-based methods allowed investigation of the heterogeneity of the fraction of mass in the struts along the sample.

2.
Materials (Basel) ; 11(12)2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30518092

ABSTRACT

The intercalation degree of nanoclays in polymeric foamed nanocomposites containing clays is a key parameter determining the final properties of the material, but how intercalation occurs is not fully understood. In this work, energy dispersive X-ray diffraction (ED-XRD) of synchrotron radiation was used as an in-situ technique to deepen into the intercalation process of polymer/nanoclay nanocomposites during foaming. Foamable nanocomposites were prepared by the melt blending route using low-density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS) with surface treated nanoclays and azodicarbonamide (ADC) as the blowing agent. Foaming was induced by heating at atmospheric pressure. The time and temperature evolution of the interlamellar distance of the clay platelets in the expanding nanocomposites was followed. Upon foaming, interlamellar distances of the nanocomposites based on LDPE and PP increase by 18% and 16% compared to the bulk foamable nanocomposite. Therefore, the foaming process enhances the nanoclay intercalation degree in these systems. This effect is not strongly affected by the type of nanoclay used in LDPE, but by the type of polymer used. Besides, the addition of nanoclays to PP and PS has a catalytic effect on the decomposition of ADC, i.e., the decomposition temperature is reduced, and the amount of gas released increases. This effect was previously proved for LDPE.

SELECTION OF CITATIONS
SEARCH DETAIL
...