Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(30): 21832-21858, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38984259

ABSTRACT

Global concerns about food security, driven by rising demand, have prompted the exploration of nanotechnology as a solution to enhance food supply. This shift comes in response to the limitations of conventional technologies in meeting the ever-increasing demand for food products. Consequently, nanoparticles play a crucial role in enhancing food production, preservation, and extending shelf life by imparting exceptional properties to materials. Nanoparticles and nanostructures with attributes like expansive surface area and antimicrobial efficacy, are versatile in both traditional packaging and integration into biopolymer matrices. These distinctive qualities contribute to their extensive use in various food sector applications. Hence, this review explores the physicochemical properties, functions, and biological aspects of nanoparticles in the context of food packaging. Furthermore, the synergistic effect of nanoparticles with different biopolymers, alongside its different potential applications such as food shelf-life extenders, antimicrobial agents and as nanomaterials for developing smart packaging systems were summarily explored. While the ongoing exploration of this research area is evident, our review highlights the substantial potential of nanomaterials to emerge as a viable choice for food packaging if the challenges regarding toxicity are carefully and effectively modulated.

2.
Beilstein J Nanotechnol ; 15: 808-816, 2024.
Article in English | MEDLINE | ID: mdl-38979525

ABSTRACT

Janus-type nanoparticles are important because of their ability to combine distinct properties and functionalities in a single particle, making them extremely versatile and valuable in various scientific, technological, and industrial applications. In this work, bimetallic silver-palladium Janus nanoparticles were obtained for the first time using the inert gas condensation technique. In order to achieve this, an original synthesis equipment built by Mantis Ltd. was modified by the inclusion of an additional magnetron in a second chamber, which allowed us to use two monometallic targets to sputter the two metals independently. With this arrangement, we could find appropriate settings at room temperature to promote the synthesis of bimetallic Janus nanoparticles. The structural properties of the resulting nanoparticles were investigated by transmission electron microscopy (TEM), and the chemical composition was analyzed by TEM energy dispersive spectroscopy (TEM-EDS), which, together with structural analysis, confirmed the presence of Janus-type nanostructures. Results of molecular dynamics and TEM simulations show that the differences between the crystalline structures of the Pd and Ag regions observed in the TEM micrographs can be explained by small mismatches in the orientations of the two regions of the particle. A density functional theory structural aims to understand the atomic arrangement at the interface of the Janus particle.

3.
ACS Omega ; 9(26): 28903-28911, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38973937

ABSTRACT

The new generation of Li-ion batteries is based on integrating 2D materials into the electrodes to increase the energy density while reducing the charging time and size. The two-dimensional transition metal carbide or nitride (MXene) materials offer ideal electronic properties, such as metallic behavior, low energy barriers for Li-ion diffusion, and structural stability. This study focuses on Nb2C and Nb2CO2 MXenes, which have shown promising Li-storage capacity, especially the oxidized phase. By using density functional theory (DFT) and thermodynamic criteria, we studied the Li intercalation process in both MXenes. The results show that the Li intercalation process in the oxidized phase is more stable. Also, the Li diffusion barriers are 35 and 250 meV for the bare and oxidized phase, due to the strong interaction between Li ions and O functional groups. Nb2C and Nb2CO2 MXenes deliver a maximum gravimetric theoretical capacity of 275 and 233.26 mA h/g, respectively, with a stable performance.

4.
Nanomaterials (Basel) ; 14(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38668178

ABSTRACT

In this report, we present the results on the physicochemical characterization of cadmium telluride quantum dots (QDs) stabilized with glutathione and prepared by optimizing the synthesis conditions. An excellent control of emissions and the composition of the nanocrystal surface for its potential application in monoclonal antibody and biomarker testing was achieved. Two samples (QDYellow, QDOrange, corresponding to their emission colors) were analyzed by dynamic light scattering (DLS), and their hydrodynamic sizes were 6.7 nm and 19.4 nm, respectively. Optical characterization by UV-vis absorbance spectroscopy showed excitonic peaks at 517 nm and 554 nm. Photoluminescence spectroscopy indicated that the samples have a maximum intensity emission at 570 and 606 nm, respectively, within the visible range from yellow to orange. Infrared spectroscopy showed vibrational modes corresponding to the functional groups OH-C-H, C-N, C=C, C-O, C-OH, and COOH, which allows for the formation of functionalized QDs for the manufacture of biomarkers. In addition, the hydrodynamic radius, zeta potential, and approximate molecular weight were determined by dynamic light scattering (DLS), electrophoretic light scattering (ELS), and static light scattering (SLS) techniques. Size dispersion and the structure of nanoparticles was obtained by Transmission Electron Microscopy (TEM) and by X-ray diffraction. In the same way, we calculated the concentration of Cd2+ ions expressed in mg/L by using the Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-OES). In addition to the characterization of the nanoparticles, the labeling of murine myeloid cells was carried out with both samples of quantum dots, where it was demonstrated that quantum dots can diffuse into these cells and connect mostly with the cell nucleus.

5.
Pharmaceutics ; 15(9)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37765201

ABSTRACT

Cancer is a disease that causes millions of deaths per year worldwide because conventional treatments have disadvantages such as unspecific tumor selectivity and unwanted toxicity. Most human solid tumors present hypoxic microenvironments and this promotes multidrug resistance. In this study, we present "Magnetogene nanoparticle vector" which takes advantage of the hypoxic microenvironment of solid tumors to increase selective gene expression in tumor cells and reduce unwanted toxicity in healthy cells; this vector was guided by a magnet to the tumor tissue. Magnetic nanoparticles (MNPs), chitosan (CS), and the pHRE-Luc plasmid with a hypoxia-inducible promoter were used to synthesize the vector called "Magnetogene nanoparticles" by ionic gelation. The hypoxic functionality of Magnetogene vector nanoparticles was confirmed in the B16F10 cell line by measuring the expression of the luciferase reporter gene under hypoxic and normoxic conditions. Also, the efficiency of the Magnetogene vector was confirmed in vivo. Magnetogene was administered by intravenous injection (IV) in the tail vein and directed through an external magnetic field at the site of tumor growth in C57Bl/6 mice. A Magnetogene vector with a size of 50 to 70 nm was directed and retained at the tumor area and gene expression was higher at the tumor site than in the others tissues, confirming the selectivity of this vector towards hypoxic tumor areas. This nanosystem, that we called the "Magnetogene vector" for systemic delivery and specific gene expression in hypoxic tumors controlled by an external magnetic designed to target hypoxic regions of tumors, can be used for cancer-specific gene therapies.

6.
J Fluoresc ; 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37624469

ABSTRACT

A known property of quantum dots (QDs) is their characteristic luminescence, which would make it possible to detect different types of cancers after being functionalized with some type of biological molecule. For this reason, in the present investigation a methodological analysis of the physicochemical characteristics of the CdTe/ZnS core/shell QDs was carried out, using techniques such as Optical Absorbance Spectroscopy (UV-Vis), Molecular Fluorescence, Fourier Transform Infrared Spectroscopy (FT-IR), Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Zeta Potential that allowed to verify the photoluminescent effectiveness of these semiconductor nanocrystals as an alternative to conventional techniques currently used for the detection of specific cancers smaller than 1 cm. The study consisted of theoretically determining the bandgap energy, the size of the nanocrystals and the molar absorptivity from the wavelength value for the maximum intensity of the excitonic peak. It was also possible to verify the maximum intensity for each sample and thus evaluate its photoluminescent response, as well as it was possible to determine the charge distribution, the hydrodynamic size and the surface composition of each quantum dot. The results obtained correspond to what has been reported in the literature, which makes them good candidates for the detection of cancer in precancerous stages.

7.
Polymers (Basel) ; 14(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35458329

ABSTRACT

In this work, the surface modification of zinc oxide nanoparticles (ZnO-NPs) with 3-glycidyloxy-propyl-trimethoxysilane (GPTMS) was investigated. The ZnO-NPs were synthesized using the physical method of continuous arc discharge in controlled atmosphere (DARC-AC). The surface modification was carried out using a chemical method with constant agitation for 24 h at room temperature. This surface functionalization of zinc oxide nanoparticles (ZnO-NPs-GPTMS) was experimentally confirmed by infrared spectroscopy (FT-IR), TGA, and XRD, and its morphological characterization was performed with SEM. The increase in mechanical bending properties in the two final hybrid materials compared to the base polymers was verified. An average increase of 67% was achieved with a moderate decrease in ductility. In the case of compressive strength, they showed mixed results, maintaining the properties. With respect to thermal properties, it was observed that inorganic reinforcement conferred resistance to degradation on the base material, giving a greater resistance to high temperatures.

8.
Nanoscale Res Lett ; 10: 48, 2015.
Article in English | MEDLINE | ID: mdl-25852345

ABSTRACT

Silver nanowires (Ag-NWs) were obtained using microwave-assisted hydrothermal method (MAH). The main advantage of the method is its high NWs production which is greater than 90%. It is also easy, fast, and highly reproducible process. One of the drawbacks presented so far in the synthesis of nanostructures by polyol path is the high temperature used in the process, which is superior than the boiling point of solvent (ethylene glycol), and also its excessive reaction time. Here, Ag-NWs with diameters of 70 to 110 nm were synthesized in 5 min in large quantities. Results showed that dimensions and shape of nanowires were very susceptible to changes with reaction parameters. The reactor power and reactor fill capacity were important for the synthesis. It was found that the reaction time needs to be decreased because of the NWs which start to deform and break up due to significant increase in the pressure's system. Energy-dispersive X-ray spectroscopy and electron diffraction analysis (SAED) did not show corresponding phases of AgO. Some aspects about synthesis parameters which are related to the percent yield and size of nanowires are also discussed.

9.
Beilstein J Nanotechnol ; 5: 881-6, 2014.
Article in English | MEDLINE | ID: mdl-24991525

ABSTRACT

This work presents results of the optical and structural characterization of oleic acid-stabilized cadmium telluride nanocrystals (CdTe-NC) synthesized by an organometallic route. After being cleaned, the CdTe-NC were dispersed in toluene to obtain an ink-like dispersion, which was drop-cast on glass substrate to deposit a thin film. The CdTe-NC colloidal dispersion as well as the CdTe drop-cast thin films were characterized with regard to the optical and structural properties. TEM analysis indicates that the CdTe-NC have a nearly spherical shape (3.5 nm as mean size). Electron diffraction and XRD diffraction analyses indicated the bulk-CdTe face-centered cubic structure for CdTe-NC. An additional diffraction line corresponding to the octahedral Cd3P2 was also detected as a secondary phase, which probably originates by reacting free cadmium ions with trioctylphosphine (the tellurium reducing agent). The Raman spectrum exhibits two broad bands centered at 141.6 and 162.3 cm(-1), which could be associated to the TO and LO modes of cubic CdTe nanocrystals, respectively. Additional peaks located in the 222 to 324 cm(-1) range, agree fairly well with the wavenumbers reported for TO modes of octahedral Cd3P2.

10.
Nanoscale Res Lett ; 7(1): 80, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22252375

ABSTRACT

Size-selected TiN nanoclusters in the range of 4 to 20 nm have been produced by an ionized cluster beam, which combines a glow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a high control in size. The size distribution of TiN nanoparticles was determined before deposition by mass spectroscopy and confirmed by atomic force microscopy. The size distribution was also analyzed using a high-resolution transmission electron micrograph. The photoluminescence [PL] spectra of TiN nanoparticles at different sizes were also experimentally investigated. We reported, for the first time, the strong visible luminescence of TiN nanoparticles on Si (111) wafer due to the reduced size. We also discussed the PL intensity as a function of the nanoparticle size distribution.

11.
Nanoscale Res Lett ; 6: 524, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21899743

ABSTRACT

A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD) is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100) substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells. PACS: 61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.).

12.
Materials (Basel) ; 4(2): 368-379, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-28879995

ABSTRACT

We study the assembling of small gold clusters subject to collisions and close contact coalescence by using molecular dynamics simulations to simulate events that occur typically in the sputtering process of synthesis. Our results support the notion that the kinetics of coalescence processes strongly determine the geometry and structure of the final particle. While impact velocities, relative orientations, and the initial shape of the interacting particles are unlikely to strictly determine the structural details of the newly formed particle, we found that high initial temperatures and/or impact velocities increase the probability of appearance of icosahedral-like structures, Wulff polyhedra are likely to be formed as a product of the interactions between nanospheres, while the appearance of fcc particles of approximately cuboctahedral shape is mainly due to the interaction between icosahedra.

13.
Nanoscale ; 2(12): 2647-51, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20944844

ABSTRACT

We report the formation of Au/Co nanoparticles and their characterization by aberration (Cs) corrected scanning transmission electron microscopy (STEM). The nanoparticles were synthesized by inert gas condensation, forming initially core-shell and bimetallic crystals. However, after thermal treatment at normal atmospheric conditions, the Co nanoparticles changed their morphology into a fine layer forming a perfect interface with the gold. The ordering of the zone rich in Co presents a fcc arrangement matching the gold lattice. The atomic analysis on the interface and the comparison of the STEM images with numerical simulations corroborated the atomic substitution of gold by cobalt.


Subject(s)
Cobalt/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning Transmission , Oxidation-Reduction
14.
Nanoscale Res Lett ; 4(8): 896-902, 2009 May 15.
Article in English | MEDLINE | ID: mdl-20596397

ABSTRACT

Silver nanoparticles were synthesized using the inert gas aggregation technique. We found the optimal experimental conditions to synthesize nanoparticles at different sizes: 1.3 ± 0.2, 1.7 ± 0.3, 2.5 ± 0.4, 3.7 ± 0.4, 4.5 ± 0.9, and 5.5 ± 0.3 nm. We were able to investigate the dependence of the size of the nanoparticles on the synthesis parameters. Our data suggest that the aggregation of clusters (dimers, trimer, etc.) into the active zone of the nanocluster source is the predominant physical mechanism for the formation of the nanoparticles. Our experiments were carried out in conditions that kept the density of nanoparticles low, and the formation of larges nanoparticles by coalescence processes was avoided. In order to preserve the structural and morphological properties, the impact energy of the clusters landing into the substrate was controlled, such that the acceleration energy of the nanoparticles was around 0.1 eV/atom, assuring a soft landing deposition. High-resolution transmission electron microscopy images showed that the nanoparticles were icosahedral in shape, preferentially oriented with a five-fold axis perpendicular to the substrate surface. Our results show that the synthesis by inert gas aggregation technique is a very promising alternative to produce metal nanoparticles when the control of both size and shape are critical for the development of practical applications.

15.
J Phys Chem B ; 110(26): 12884-9, 2006 Jul 06.
Article in English | MEDLINE | ID: mdl-16805586

ABSTRACT

Several series of molecular dynamics runs were performed to simulate the melting transition of bimetallic cuboctahedral nanoparticles of gold-palladium at different relative concentrations to study their structural properties before, in, and after the transition. The simulations were made in the canonical ensemble, each series covering a range of temperatures from 300 to 980 K, using the Rafii-Tabar version of the Sutton and Chen interatomic potential for metallic alloys. We found that the melting transition temperature has a strong dependence on the relative concentrations of the atomic species. We also found that, previous to the melting transition, the outer layer of the nanoparticle gets disordered in what can be thought as a premelting stage, where Au atoms near the surface migrate to the surface and remain there after the particle melts as a whole. The melting of the surface below Tm is consistent with studies of the interaction of a TEM electron beam with Au and Au-Pd nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...