Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35161108

ABSTRACT

Currently, a significant portion (~50%) of global warming emissions, such as CO2, are related to energy production and transportation. As most energy usage will be electrical (as well as transportation), the efficient management of electrical power is thus central to achieve the XXI century climatic goals. Ultra-wide bandgap (UWBG) semiconductors are at the very frontier of electronics for energy management or energy electronics. A new generation of UWBG semiconductors will open new territories for higher power rated power electronics and solar-blind deeper ultraviolet optoelectronics. Gallium oxide-Ga2O3 (4.5-4.9 eV), has recently emerged pushing the limits set by more conventional WBG (~3 eV) materials, such as SiC and GaN, as well as for transparent conducting oxides (TCO), such asIn2O3, ZnO and SnO2, to name a few. Indeed, Ga2O3 as the first oxide used as a semiconductor for power electronics, has sparked an interest in oxide semiconductors to be investigated (oxides represent the largest family of UWBG). Among these new power electronic materials, AlxGa1-xO3 may provide high-power heterostructure electronic and photonic devices at bandgaps far beyond all materials available today (~8 eV) or ZnGa2O4 (~5 eV), enabling spinel bipolar energy electronics for the first time ever. Here, we review the state-of-the-art and prospects of some ultra-wide bandgap oxide semiconductor arising technologies as promising innovative material solutions towards a sustainable zero emission society.

2.
Materials (Basel) ; 14(19)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34640228

ABSTRACT

Wide bandgap (WBG) semiconductors are becoming more widely accepted for use in power electronics due to their superior electrical energy efficiencies and improved power densities. Although WBG cubic silicon carbide (3C-SiC) displays a modest bandgap compared to its commercial counterparts (4H-silicon carbide and gallium nitride), this material has excellent attributes as the WBG semiconductor of choice for low-resistance, reliable diode and MOS devices. At present the material remains firmly in the research domain due to numerous technological impediments that hamper its widespread adoption. The most obvious obstacle is defect-free 3C-SiC; presently, 3C-SiC bulk and heteroepitaxial (on-silicon) display high defect densities such as stacking faults and antiphase boundaries. Moreover, heteroepitaxy 3C-SiC-on-silicon means low temperature processing budgets are imposed upon the system (max. temperature limited to ~1400 °C) limiting selective doping realisation. This paper will give a brief overview of some of the scientific aspects associated with 3C-SiC processing technology in addition to focussing on the latest state of the art results. A particular focus will be placed upon key process steps such as Schottky and ohmic contacts, ion implantation and MOS processing including reliability. Finally, the paper will discuss some device prototypes (diodes and MOSFET) and draw conclusions around the prospects for 3C-SiC devices based upon the processing technology presented.

3.
Adv Mater ; 28(43): 9644-9647, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27629252

ABSTRACT

The first antiferroelectric solar cell is presented. This study shows that antiferroelectric thin-film photovoltaic current can be switched on when biased into the polar phase to generate abovebandgap photovoltages in excess of 100 V and photovoltaic fields of several megavolts per centimeter, the largest ever measured for any material.

SELECTION OF CITATIONS
SEARCH DETAIL
...