Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 10(10)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34679721

ABSTRACT

A new series of twenty-three 1,5-benzodiazepin-2(3H)-ones were synthesized and evaluated in the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays as a new chemotype with antioxidant and good drug-like properties. All of the derivatives showed low cytotoxicity in comparison to curcumin against the human neuroblastoma SH-SY5Y and the human hepatoma HepG2 cell lines. Experimental solubility in bio-relevant media showed a good relationship with melting points in this series. Five compounds with the best antioxidant properties showed neuroprotectant activity against H2O2-induced oxidative stress in the SH-SY5Y cell line. From them, derivatives 4-phenyl-1H-1,5-benzodiazepin-2(3H)-one (18) and 4-(3,4,5-trimethoxyphenyl)-1H-1,5-benzodiazepin-2(3H)-one (20) yielded good neuroprotection activity in the same neuronal cell line under 6-OHD and MPP+ insults as in vitro models of mitochondrial dysfunction and oxidative stress in Parkinson's disease (PD). Both compounds also demonstrated a significant reduction of intracellular Reactive Oxygen Species (ROS) and superoxide levels, in parallel with a good improvement of the Mitochondrial Membrane Potential (ΔΨm). Compared with curcumin, compound 18 better reduced lipid peroxidation levels, malondialdehyde (MDA), in SH-SY5Y cells under oxidative stress pressure and recovered intracellular glutathione synthetase (GSH) levels. Apoptosis and caspase-3 levels of SH-SY5Y under H2O2 pressure were also reduced after treatment with 18. Neuroprotection in neuron-like differentiated SH-SY5Y cells was also achieved with 18. In summary, this family of 1,5-benzodiazepin-2-ones with an interesting antioxidant and drug-like profile, with low cytotoxic and good neuroprotectant activity, constitutes a new promising chemical class with high potential for the development of new therapeutic agents against PD.

2.
ACS Omega ; 5(39): 25408-25422, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33043221

ABSTRACT

Nine 3,5-dihydro-4H-pyrido[2,3-b][1,4]diazepin-4-ones (17-25), some of which contain fluoro-substituents, have been regiospecifically prepared by reaction of 2,3-diaminopyridines with ethyl aroylacetates. In two cases, open intermediates have been isolated and these are related to the reaction pathway. The X-ray crystal structure of 1-methyl-4-phenyl-3,5-dihydro-4H-pyrido[2,3-b][1,4]diazepin-4-one (23) has been solved (formula, C15H13N3O; crystal system, monoclinic; space group, C2/c). This is an asymmetric unit constituted by a single nonplanar molecule and its conformational enantiomer due to the presence of the seven-membered diazepin-2-one moiety, which introduces a certain degree of torsion in the adjacent pyridine ring. The 1H, 13C, 15N, and 19F NMR spectra were obtained and the chemical shifts, together with those of the previously published 1,3-dihydro-2H-benzo[b][1,4]diazepin-2-ones (1-16), i.e., a total of 544 values, were successfully compared with the chemical shifts calculated at the gauge invariant atomic orbital (GIAO)/Becke, three-parameter, Lee-Yang-Parr (B3LYP)/6-311++G(d,p) level. The seven-membered ring inversion barrier in 5-benzyl-2-phenyl-3,5-dihydro-4H-pyrido[2,3-b][1,4]diazepin-4-one (25) was determined and, in conjunction with the data from the literature, compared with the B3LYP/6-311++G(d,p) computed values. This allowed the determination of several structural effects. The rotation about the exocyclic N1-CR bond was also calculated and its dynamic properties were discussed.

3.
Solid State Nucl Magn Reson ; 108: 101676, 2020 08.
Article in English | MEDLINE | ID: mdl-32640403

ABSTRACT

Theoretical simulation of NMR parameters in compounds bearing heavy atoms generally requires the application of relativistic corrections. We report herein the theoretical characterization of 13C and 15N CPMAS NMR of known bromo-derivative crystals by using both the GIPAW and the combined GIAO-ZORA-SO approximation methods. Several statistical analyses were performed to compare both approaches, with non-relativistic GIPAW method being more useful to predict the 13C and 15N chemical shifts. The problem of applying GIPAW to crystal structures showing static or dynamic crystalline disorder of the special class resulting in half-protons will be discussed in detail.

4.
J Phys Chem A ; 124(3): 560-572, 2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31880451

ABSTRACT

Weak hydrogen bonds are increasingly hypothesized to play key roles in a wide range of chemistry from catalysis to gelation to polymer structure. Here, 15N/13C spin-echo magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) experiments are applied to "view" intermolecular CH···N hydrogen bonding in two selectively labeled organic compounds, 4-[15N] cyano-4'-[13C2] ethynylbiphenyl (1) and [15N3,13C6]-2,4,6-triethynyl-1,3,5-triazine (2). The synthesis of 2-15N3,13C6 is reported here for the first time via a multistep procedure, where the key element is the reaction of [15N3]-2,4,6-trichloro-1,3,5-triazine (5) with [13C2]-[(trimethylsilyl)ethynyl]zinc chloride (8) to afford its immediate precursor [15N3,13C6]-2,4,6-tris[(trimethylsilyl)ethynyl]-1,3,5-triazine (9). Experimentally determined hydrogen-bond-mediated 2hJCN couplings (4.7 ± 0.4 Hz (1) and 4.1 ± 0.3 Hz (2)) are compared with density functional theory (DFT) gauge-including projector augmented wave (GIPAW) calculations, whereby species-independent coupling values 2hKCN (29.0 × 1019 kg m-2 s-2 A-2 (1) and 27.9 × 1019 kg m-2 s-2 A-2 (2)) quantitatively demonstrate the J couplings for these "weak" CH···N hydrogen bonds to be of a similar magnitude to those for conventionally observed NH···O hydrogen-bonding interactions in uracil (2hKNO: 28.1 and 36.8 × 1019 kg m-2 s-2 A-2). Moreover, the GIPAW calculations show a clear correlation between increasing 2hJCN (and 3hJCN) coupling and reducing C(H)···N and H···N hydrogen-bonding distances, with the Fermi contact term accounting for at least 98% of the isotropic 2hJCN coupling.

5.
Magn Reson Chem ; 53(5): 353-62, 2015 May.
Article in English | MEDLINE | ID: mdl-25615404

ABSTRACT

The chemical shifts and several (19)F-(19)F, (13)C-(19) F and (1)H-(19)F spin-spin coupling constants (SSCSs) of eight 4,5,6,7-tetraflurobenzazoles (three benzimidazoles, three benzimidazolinones and two indazoles) have been determined. The chemical shifts were discussed using gauge including atomic orbital-density functional theory calculations taking into account solvent effects (polarizable continuum model) and, for the solid state, hydrogen bonds (clusters up to three molecules).

6.
Beilstein J Org Chem ; 9: 2156-67, 2013.
Article in English | MEDLINE | ID: mdl-24204428

ABSTRACT

Two novel tetrafluorinated 1,5-benzodiazepinones were synthesized and their X-ray structures determined. 6,7,8,9-Tetrafluoro-4-methyl-1,3-dihydro-2H-1,5-benzodiazepin-2-one crystallizes in the monoclinic P21/c space group and 6,7,8,9-tetrafluoro-1,4-dimethyl-1,3-dihydro-2H-1,5-benzodiazepin-2-one in the triclinic P-1 space group. Density functional theory studies at the B3LYP/6-311++G(d,p) level were carried out on these compounds and on four non-fluorinated derivatives, allowing to calculate geometries, tautomeric energies and ring-inversion barriers, that were compared with the experimental results obtained by static and dynamic NMR in solution and in solid state.

7.
Chemistry ; 19(19): 6044-51, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23463532

ABSTRACT

Achiral compounds 4-methoxy-4-(p-methoxyphenyl)cyclohexanoneethylene ketal (2), 4-hydroxy-4-(p-methoxy phenyl)cyclohexanoneethylene ketal (3), and 3,5-dimethyl-4-nitropyrazole (4) crystallized in chiral structures and the samples showed an enantiomeric excess. We have determined the absolute structures of these compounds by using X-ray diffraction with copper radiation at low temperatures. Moreover, we have also established the prevalent absolute structures in these samples, by comparing their calculated and solid-state vibrational circular dichroism (VCD) spectra. The consistency of this method was confirmed by using (R,R)-2,8-diiodo-4,10-dimethyl-6 H,12H-5,11-methano-dibenzo[b,f][1,5]diazocine, Tröger's base, (R,R)-1, as a chiral compound of known absolute configuration.


Subject(s)
Cyclohexanones/chemistry , Pyrazoles/chemistry , X-Ray Diffraction/instrumentation , Circular Dichroism , Molecular Structure , Stereoisomerism
8.
Eur J Med Chem ; 46(4): 1439-47, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21334118

ABSTRACT

The inhibition of neuronal and inducible nitric oxide synthases (nNOS and iNOS) by a series of 36 indazoles has been evaluated, showing that most of the assayed derivatives are better iNOS than nNOS inhibitors. A parabolic model relating the iNOS inhibition percentage with the difference, E(rel), between stacking and apical interaction energies of indazoles with the active site of the NOS enzyme has been established.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Indazoles/chemical synthesis , Indazoles/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Indazoles/chemistry , Nitric Oxide Synthase Type I/antagonists & inhibitors , Nitric Oxide Synthase Type II/antagonists & inhibitors
9.
J Magn Reson ; 206(2): 274-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20716491

ABSTRACT

A 2hJNN intermolecular spin-spin coupling constant (SSCC) of 10.2±0.4 Hz has been measured for the powdered tetrachlorogallate salt of pyridinium solvated by pyridine (pyridine-H+⋯pyridine cation 3). Density Functional Theory (DFT) calculations at the B3LYP/6-311++G(d,p) level reproduced this value and two others reported in the literature for 2hJ intermolecular SSCCs, which were measured for complexes in solution.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Models, Chemical , Nitrogen Radioisotopes/analysis , Nitrogen Radioisotopes/chemistry , Pyridinium Compounds/chemistry , Computer Simulation , Hydrogen Bonding
10.
Bioorg Med Chem ; 17(17): 6180-7, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19679481

ABSTRACT

In order to find new compounds with neuroprotective activity and NOS-I/NOS-II selectivity, we have designed, synthesized, and characterized 14 new NOS inhibitors with an indazole structure. The first group corresponds to 4,5,6,7-tetrahydroindazoles (4-8), the second to the N-methyl derivatives (9-12) of 7-nitro-1H-indazole (1) and 3-bromo-7-nitro-1H-indazole (2), and the latter to 4,5,6,7-tetrafluoroindazoles (13-17). Compound 13 (4,5,6,7-tetrafluoro-3-methyl-1H-indazole) inhibited NOS-I by 63% and NOS-II by 83%. Interestingly, compound 16 (4,5,6,7-tetrafluoro-3-perfluorophenyl-1H-indazole) inhibited NOS-II activity by 80%, but it did not affect to NOS-I activity. Structural comparison between these new indazoles further supports the importance of the aromatic indazole skeleton for NOS inhibition and indicate that bulky groups or N-methylation of 1 and 2 diminish their effect on NOS activity. The fluorination of the aromatic ring increased the inhibitory potency and NOS-II selectivity, suggesting that this is a promising strategy for NOS selective inhibitors.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Indazoles/chemical synthesis , Neuroprotective Agents/chemical synthesis , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type I/antagonists & inhibitors , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Halogenation , Heme/chemistry , Indazoles/chemistry , Indazoles/pharmacology , Male , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide Synthase Type II/metabolism , Rats , Rats, Wistar
11.
J Am Chem Soc ; 130(27): 8620-32, 2008 Jul 09.
Article in English | MEDLINE | ID: mdl-18597427

ABSTRACT

Using solid-state NMR spectroscopy, we have detected and characterized ultrafast intramolecular proton tautomerism in the N-H-N hydrogen bonds of solid N, N'-diphenyl-6-aminofulvene-1-aldimine ( I) on the microsecond-to-picosecond time scale. (15)N cross-polarization magic-angle-spinning NMR experiments using (1)H decoupling performed on polycrystalline I- (15)N 2 and the related compound N-phenyl- N'-(1,3,4-triazole)-6-aminofulvene-1-aldimine ( II) provided information about the thermodynamics of the tautomeric processes. We found that II forms only a single tautomer but that the gas-phase degeneracy of the two tautomers of I is lifted by solid-state interactions. Rate constants, including H/D kinetic isotope effects (KIEs), on the microsecond-to-picosecond time scale were obtained by measuring and analyzing the longitudinal (15)N and (2)H relaxation times of I- (15)N 2, I- (15)N 2- d 10, and I- (15)N 2- d 1 over a wide temperature range. In addition to the microcrystalline modification, a novel amorphous modification of I was found and studied. In this modification, proton transfer is much faster than in the crystalline form. For both modifications, we observed large H/D KIEs that were temperature-dependent at high temperatures and temperature-independent at low temperatures. These findings are interpreted in terms of a simple quasiclassical tunneling model proposed by Bell and modified by Limbach. We obtained evidence that a reorganization energy is necessary in order to compress the N-H-N hydrogen bond and achieve a molecular configuration in which the barrier for H transfer is reduced and tunneling or an over-barrier reaction can occur.

12.
J Am Chem Soc ; 130(3): 945-54, 2008 Jan 23.
Article in English | MEDLINE | ID: mdl-18166050

ABSTRACT

Weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl, for which single-crystal diffraction structures reveal close CH...O=C and C[triple bond]CH...N[triple bond]C distances, is investigated in a study that combines the experimental determination of 1H, 13C, and 15N chemical shifts by magic-angle spinning (MAS) solid-state NMR with first-principles calculations using plane-wave basis sets. An optimized synthetic route, including the isolation and characterization of intermediates, to 4-cyano-4'-ethynylbiphenyl at natural abundance and with 13C[triple bond]13CH and 15N[triple bond]C labeling is described. The difference in chemical shifts calculated, on the one hand, for the full crystal structure and, on the other hand, for an isolated molecule depends on both intermolecular hydrogen bonding interactions and aromatic ring current effects. In this study, the two effects are separated computationally by, first, determining the difference in chemical shift between that calculated for a plane (uracil) or an isolated chain (4-cyano-4'-ethynylbiphenyl) and that calculated for an isolated molecule and by, second, calculating intraplane or intrachain nucleus-independent chemical shifts that quantify the ring current effects caused by neighboring molecules. For uracil, isolated molecule to plane changes in the 1H chemical shift of 2.0 and 2.2 ppm are determined for the CH protons involved in CH...O weak hydrogen bonding; this compares to changes of 5.1 and 5.4 ppm for the NH protons involved in conventional NH...O hydrogen bonding. A comparison of CH bond lengths for geometrically relaxed uracil molecules in the crystal structure and for geometrically relaxed isolated molecules reveals differences of no more than 0.002 A, which corresponds to changes in the calculated 1H chemical shifts of at most 0.1 ppm. For the C[triple bond]CH...N[triple bond]C weak hydrogen bonds in 4-cyano-4'-ethynylbiphenyl, the calculated molecule to chain changes are of similar magnitude but opposite sign for the donor 13C and acceptor 15N nuclei. In uracil and 4-cyano-4'-ethynylbiphenyl, the CH hydrogen-bonding donors are sp2 and sp hybridized, respectively; a comparison of the calculated changes in 1H chemical shift with those for the sp3 hybridized CH donors in maltose (Yates et al. J. Am. Chem. Soc. 2005, 127, 10216) reveals no marked dependence on hybridization for weak hydrogen-bonding strength.


Subject(s)
Biphenyl Compounds/chemistry , Nitriles/chemistry , Uracil/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Mathematical Computing
13.
J Org Chem ; 68(21): 7943-50, 2003 Oct 17.
Article in English | MEDLINE | ID: mdl-14535769

ABSTRACT

Reaction of 1-substituted 4-acyl-5-hydroxy-3-methyl-1H-pyrazoles (2) with hydroxylamine gives the corresponding "oximes" 3, which are mainly present as (Z)-2,4-dihydro-4-[(hydroxyamino)methylene]-3H-pyrazol-3-ones. Treatment of compounds 3 with trichloroacetyl isocyanate/potassium carbonate in anhydrous diethyl ether affords 7-methyl-1,5,6-triazaspiro[2.4]hepta-1,6-dien-4-ones (4). The structure of compounds 4 was elucidated by means of single-crystal X-ray analysis (4f, 4h) and confirmed by NMR spectroscopic investigations ((1)H, (13)C).

14.
J Org Chem ; 67(5): 1462-71, 2002 Mar 08.
Article in English | MEDLINE | ID: mdl-11871874

ABSTRACT

To study systems able to sustain intramolecular proton-transfer, we have prepared a series of six aminofulvene aldimines including several labeled with (15)N and (2)H. These compounds show coupling constants through the hydrogen bond, (1h)J((15)N- (1)H) and (2h)J((15)N-(15)N). The position of the tautomeric equilibria, i.e., on what nitrogen atom is the proton, was determined in the solid state and in solution. The crystal structure of N[[5-[(phenylamino)methylene]-1,3-cyclopentadien-1-yl]methylene]pyrrole-1-amine (3) has been determined by X-ray analysis. In solution, both N-H and C-H tautomers were observed and their structures assigned by NMR spectroscopy. Particularly useful is the value of the (1)J((15)N-(1)H) coupling constant.

15.
J Am Chem Soc ; 124(7): 1152-3, 2002 Feb 20.
Article in English | MEDLINE | ID: mdl-11841267

ABSTRACT

A new method for detecting hydrogen bonds in the solid state is presented. Using two-dimensional NMR correlation experiments, it is shown that a hydrogen-bond mediated J coupling can be observed in a powder under magic-angle spinning conditions, even though the J coupling is 2 orders of magnitude smaller than the dominant anisotropic interactions encountered in solid-state NMR. Specifically, the observation of a pair of peaks in a two-dimensional 15N-15N solid-state INADEQUATE experiment due to two nitrogens that have no covalent connectivity is attributed to the presence of a J coupling across a linking hydrogen bond.


Subject(s)
Amines/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Triazoles/chemistry , Hydrogen Bonding , Nitrogen Isotopes , Nucleic Acid Conformation , Protein Structure, Secondary
17.
Angew Chem Int Ed Engl ; 40(2): 420-423, 2001 Jan 19.
Article in English | MEDLINE | ID: mdl-29712407

ABSTRACT

An unusually substantial coupling is observed across the hydrogen bond of fully 15 N-labeled compound 1 when it is studied by 1 H and 15 N NMR spectroscopy. The structure was determined by X-ray diffraction and shown to correspond to tautomer 1 a (both in the solid state and in solution). These results open up a new field of hydrogen-bond research by NMR spectroscopic methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...