Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Cells ; 13(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891028

ABSTRACT

Cervical cancer (CC) remains among the most frequent cancers worldwide despite advances in screening and the development of vaccines against human papillomavirus (HPV), involved in virtually all cases of CC. In mid-income countries, a substantial proportion of the cases are diagnosed in advanced stages, and around 40% of them are diagnosed in women under 49 years, just below the global median age. This suggests that members of this age group share common risk factors, such as chronic inflammation. In this work, we studied samples from 46 patients below 45 years old, searching for a miRNA profile regulating cancer pathways. We found 615 differentially expressed miRNAs between tumor samples and healthy tissues. Through bioinformatic analysis, we found that several of them targeted elements of the JAK/STAT pathway and other inflammation-related pathways. We validated the interactions of miR-30a and miR-34c with JAK1 and STAT3, respectively, through dual-luciferase and expression assays in cervical carcinoma-derived cell lines. Finally, through knockdown experiments, we observed that these miRNAs decreased viability and promoted proliferation in HeLa cells. This work contributes to understanding the mechanisms through which HPV regulates inflammation, in addition to its canonical oncogenic function, and brings attention to the JAK/STAT signaling pathway as a possible diagnostic marker for CC patients younger than 45 years. To our knowledge to date, there has been no previous description of a panel of miRNAs or even ncRNAs in young women with locally advanced cervical cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Inflammation , MicroRNAs , STAT3 Transcription Factor , Signal Transduction , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction/genetics , Adult , Inflammation/genetics , Inflammation/pathology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , HeLa Cells , Janus Kinase 1/metabolism , Janus Kinase 1/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Middle Aged
2.
Neoplasia ; 48: 100959, 2024 02.
Article in English | MEDLINE | ID: mdl-38183711

ABSTRACT

Gastrointestinal Stromal Tumors (GIST) are the most frequent mesenchymal neoplasia of the digestive tract. Genomic alterations in KIT, PDFGRA, SDH, and BRAF genes are essential in GIST oncogenesis. Therefore, the mutations in these genes have demonstrated clinical implications. Tumors with deletions in KIT-exon 11 or duplications in exon 9 are associated with a worse prognosis. In contrast, KIT-exon 11 substitutions and duplications are associated with a better clinical outcome. Moreover, mutations in Kit exon 9 and 11 are actionable, due to their response to imatinib, while mutations in PDGFRA respond to sunitinib and/or avapritinib. Although, molecular testing on tissue samples is effective; it is invasive, requires adequate amounts of tissue, and a long experimental process is needed for results. In contrast, liquid biopsy has been proposed as a simple and non-invasive method to test biomarkers in cancer. The most common molecule analyzed by liquid biopsy is circulating tumor DNA (ctDNA). GISTs ctDNA testing has been demonstrated to be effective in identifying known and novel KIT mutations that were not detected using traditional tissue DNA testing and have been useful in determining progression risk and response to TKI therapy. This allows the clinician to have an accurate picture of the genetic changes of the tumor over time. In this work, we aimed to discuss the implications of mutational testing in clinical outcomes, the methods to test ctDNA and the future challenges in the establishment of alternatives of personalized medicine.


Subject(s)
Gastrointestinal Stromal Tumors , Humans , Gastrointestinal Stromal Tumors/diagnosis , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Sunitinib/therapeutic use , Prognosis , Mutation , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/therapeutic use , Receptor, Platelet-Derived Growth Factor alpha/genetics
3.
Curr Issues Mol Biol ; 45(12): 9549-9565, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38132443

ABSTRACT

Colorectal cancer (CRC) represents the second deadliest malignancy worldwide. Around 75% of CRC patients exhibit high levels of chromosome instability that result in the accumulation of somatic copy number alterations. These alterations are associated with the amplification of oncogenes and deletion of tumor-ppressor genes and contribute to the tumoral phenotype in different malignancies. Even though this relationship is well known, much remains to be investigated regarding the effect of said alterations in long non-coding RNAs (lncRNAs) and, in turn, the impact these alterations have on the tumor phenotype. The present study aimed to evaluate the role of differentially expressed lncRNAs coded in regions with copy number alterations in colorectal cancer patient samples. We downloaded RNA-seq files of the Colorectal Adenocarcinoma Project from the The Cancer Genome Atlas (TCGA) repository (285 sequenced tumor tissues and 41 non-tumor tissues), evaluated differential expression, and mapped them over genome sequencing data with regions presenting copy number alterations. We obtained 78 differentially expressed (LFC > 1|< -1, padj < 0.05) lncRNAs, 410 miRNAs, and 5028 mRNAs and constructed a competing endogenous RNA (ceRNA) network, predicting significant lncRNA-miRNA-mRNA interactions. Said network consisted of 30 lncRNAs, 19 miRNAs, and 77 mRNAs. To understand the role that our ceRNA network played, we performed KEGG and GO analysis and found several oncogenic and anti-oncogenic processes enriched by the molecular players in our network. Finally, to evaluate the clinical relevance of the lncRNA expression, we performed survival analysis and found that C5orf64, HOTAIR, and RRN3P3 correlated with overall patient survival. Our results showed that lncRNAs coded in regions affected by SCNAs form a complex gene regulatory network in CCR.

4.
Int J Colorectal Dis ; 38(1): 158, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37261538

ABSTRACT

BACKGROUND: After tumor resection, a preventive diverting loop ileostomy creation is a routine surgical procedure to prevent anastomotic leakage and infections and to preclude secondary surgeries. Despite its benefits, several studies have proposed potential complications that extend the disease course by impairing the feasibility of adjuvant chemotherapy and adherence. PURPOSE: The aim of this study was to evaluate the impact of ileostomy complications on the adherence to adjuvant treatment and overall survival (OS) of colon cancer (CC) patients. METHODS: Retrospective, observational study. Patients diagnosed with colon adenocarcinoma were treated between January 2010 and December 2020 at the National Cancer Institute in Mexico. STATISTICAL ANALYSIS: χ2 and t-test, Kaplan-Meier, log-rank, and Cox regression. Statistical significance differences were assessed when p was bilaterally < 0.05. RESULTS: The most frequent complications of loop-derived ileostomy were hydro-electrolytic dehydration (50%), acute kidney injury (AKI) (26%), grade 1-2 diarrhea (28%), and grade 3-4 diarrhea (21%) (p = 0.001). Patients with complete chemotherapy did not reach the median OS. In contrast, the median OS for patients with non-complete chemotherapy was 56 months (p = 0.023). Additionally, 5-year OS reached to 100% in the early restitution group, 85% in the late restitution group, and 60% in the non-restitution group (p = 0.016). Finally, AKI (p = 0.029; 95% confidence interval (CI) 3.348 [1.133-9.895]), complete chemotherapy (p = 0.028; 95% CI 0.376 [0.105-0.940]), and reversed ileostomy (p = 0.001; 95% CI 0.125 [0.038-0.407]) remained as predictors of overall survival for patients with CC treated with a loop ileostomy. CONCLUSIONS: Our results emphasize the early stoma reversal restitution as a safe and feasible alternative to prevent severe complications related to ileostomies which improve chemotherapy adherence and overall survival of colon cancer patients. This is one of the pioneer studies analyzing the impact of ileostomy on treatment adherence and outcome of Latin American patients with colon cancer. TRIAL REGISTRATION: Retrospective study No. 2021/045, in April 2021.


Subject(s)
Acute Kidney Injury , Adenocarcinoma , Colonic Neoplasms , Rectal Neoplasms , Humans , Ileostomy/adverse effects , Ileostomy/methods , Colonic Neoplasms/drug therapy , Colonic Neoplasms/surgery , Colonic Neoplasms/complications , Retrospective Studies , Adenocarcinoma/surgery , Anastomosis, Surgical/adverse effects , Treatment Outcome , Diarrhea/complications , Acute Kidney Injury/etiology , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Rectal Neoplasms/surgery
5.
Front Oncol ; 12: 773438, 2022.
Article in English | MEDLINE | ID: mdl-35359376

ABSTRACT

Despite efforts to promote health policies focused on screening and early detection, cervical cancer continues to be one of the leading causes of mortality in women; in 2020, estimated 30,000 deaths in Latin America were reported for this type of tumor. While the therapies used to treat cervical cancer have excellent results in tumors identified in early stages, those women who are diagnosed in locally advanced and advanced stages show survival rates at 5 years of <50%. Molecular patterns associated with clinical response have been studied in patients who present resistance to treatment; none of them have reached clinical practice. It is therefore necessary to continue analyzing molecular patterns that allow us to identify patients at risk of developing resistance to conventional therapy. In this study, we analyzed the global methylation profile of 22 patients diagnosed with locally advanced cervical cancer and validated the genomic results in an independent cohort of 70 patients. We showed that BRD9 promoter region methylation and CTU1 demethylation were associated with a higher overall survival (p = 0.06) and progression-free survival (p = 0.0001), whereas DOCK8 demethylation was associated with therapy-resistant patients and a lower overall survival and progression-free survival (p = 0.025 and p = 0.0001, respectively). Our results suggest that methylation of promoter regions in specific genes may provide molecular markers associated with response to treatment in cancer; further investigation is needed.

6.
Biochem Biophys Rep ; 30: 101252, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35313644

ABSTRACT

Colon cancer (CC) is the third most common neoplasm and the fourth cause of cancer-related death worldwide in both sexes. It has been established that inflammation plays a critical role in tumorigenesis and progression of CC. Immune, stromal and tumor cells supply the tumor microenvironment with pro-inflammatory cytokines such as interleukin 1ß, TNFα, IL-6 and IL-11, to hyperactivate signaling pathways linked to cancerous processes. Recent findings suggest a putative role of microRNAs (miRNAs) in the progression and management of the inflammatory response in intestinal diseases. Moreover, miRNAs are able to regulate expression of molecular mediators that are linking inflammation and cancer. In this work a miRNA panel differentially expressed between healthy, inflammatory bowel disease (IBD) and CC tissue was established. Identified miRNAs regulate signaling pathways related to inflammation and cancer progression. An inflammation associated-miRNA panel composed of 11-miRNAs was found to be overexpressed in CC but not in inflamed or normal tissues (miR-21-5p, miR-304-5p, miR-577, miR-335-5p, miR-21-3p, miR-27b-5p, miR-335-3p, miR-215-5p, miR-30b-5p, miR-192-5p, miR-3065-5p). The association of top hit miRNAs, miR-3065-5p and miR-30b-5p expression with overall survival of CC patients was demonstrated using Kaplan-Meier tests. Finally, differential miRNA expression was validated using an inflammation-associated CC model induced by Azoxymethane/Dextran Sodium Sulfate (AOM/DSS) to compare miRNA expression in normal and inflamed tissue versus CC tissues. Based on these findings we propose the identified inflammatory miRNA panel as a potent diagnostic tool for CC determination.

7.
Front Oncol ; 11: 676562, 2021.
Article in English | MEDLINE | ID: mdl-34692471

ABSTRACT

Aberrant metabolism is arising interest in the scientific community not only because of the role it plays in the development and establishment of the tumor mass but also the possibility of drug poisoning of key enzymes overexpressed in tumor cells. Moreover, tumor metabolism provides key molecules to maintain the epigenetic changes that are also an undisputed characteristic of each tumor type. This metabolic change includes the Warburg effect and alterations in key pathways involved in glutaminolysis, pentose phosphate, and unsaturated fatty acid biosynthesis. Modifications in all these pathways have consequences that impact genetics and epigenetics processes such as DNA methylation patterns, histone post-translational modifications, triggering oncogenes activation, and loss in tumor suppressor gene expression to lead the tumor establishment. In this review, we describe the metabolic rearrangement and its association with epigenetic regulation in breast cancer, as well as its implication in biological processes involved in cancer progression. A better understanding of these processes could help to find new targets for the diagnosis, prognosis, and treatment of this human health problem.

8.
Gastroenterology ; 157(6): 1544-1555.e3, 2019 12.
Article in English | MEDLINE | ID: mdl-31473225

ABSTRACT

BACKGROUND & AIMS: Sperm flagellar 1 (also called CLAMP) is a microtubule-associated protein that regulates microtubule dynamics and planar cell polarity in multi-ciliated cells. We investigated the localization and function of sperm flagellar 1, or CLAMP, in human intestinal epithelia cells (IECs). METHODS: We performed studies with SKCO-15 and human intestinal enteroids established from biopsies from different intestinal segments (duodenal, jejunum, ileal, and colon) of a single donor. Enteroids were induced to differentiation after incubation with growth factors. The distribution of endogenous CLAMP in IECs was analyzed by immunofluorescence microscopy using total internal reflection fluorescence-ground state depletion and confocal microscopy. CLAMP localization was followed during the course of intestinal epithelial cell polarization as cells progressed from flat to compact, confluent monolayers. Protein interactions with endogenous CLAMP were determined in SKCO-15 cells using proximity ligation assays and co-immunoprecipitation. CLAMP was knocked down in SKCO-15 monolayers using small hairpin RNAs and cells were analyzed by immunoblot and immunofluorescence microscopy. The impact of CLAMP knock-down in migrating SKCO-15 cells was assessed using scratch-wound assays. RESULTS: CLAMP bound to actin and apical junctional complex proteins but not microtubules in IECs. In silico analysis predicted the calponin-homology domain of CLAMP to contain conserved amino acids required for actin binding. During IEC polarization, CLAMP distribution changed from primarily basal stress fibers and cytoplasm in undifferentiated cells to apical membranes and microvilli in differentiated monolayers. CLAMP accumulated in lamellipodia and filopodia at the leading edge of migrating cells in association with actin. CLAMP knock-down reduced the number of filopodia, perturbed filopodia polarity, and altered the organization of actin filaments within lamellipodia. CONCLUSIONS: CLAMP is an actin-binding protein, rather than a microtubule-binding protein, in IECs. CLAMP distribution changes during intestinal epithelial cell polarization, regulates the formation of filopodia, and appears to assist in the organization of actin bundles within lamellipodia of migrating IECs. Studies are needed to define the CLAMP domains that interact with actin and whether its loss from IECs affects intestinal function.


Subject(s)
Actins/metabolism , Cell Movement , Intestinal Mucosa/cytology , Microfilament Proteins/metabolism , Pseudopodia/metabolism , Animals , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Colon/cytology , Colon/metabolism , Epithelial Cells , Humans , Intestinal Mucosa/metabolism , Microtubules/metabolism
9.
Int J Mol Sci ; 20(2)2019 Jan 11.
Article in English | MEDLINE | ID: mdl-30641908

ABSTRACT

The mechanisms behind the induction of malignancy and chemoresistance in breast cancer cells are still not completely understood. Inflammation is associated with the induction of malignancy in different types of cancer and is highlighted as an important factor for chemoresistance. In previous work, we demonstrated that the inflammatory cytokine interleukin 1ß (IL-1ß)-induced upregulation of genes was associated with chemoresistance in breast cancer cells. Here, we evaluated the participation and the expression profile of TP63 in the induction of resistance to cisplatin. By loss-of-function assays, we identified that IL-1ß particularly upregulates the expression of the tumor protein 63 (TP63) isoform ΔNP63α, through the activation of the IL-1ß/IL-1RI/ß-catenin signaling pathway. Upregulation of ΔNP63α leads to an increase in the expression of the cell survival factors epidermal growth factor receptor (EGFR) and phosphatase 1D (Wip1), and a decrease in the DNA damage sensor, ataxia-telangiectasia mutated (ATM). The participation of these processes in the increase of resistance to cisplatin was confirmed by silencing TP63 expression or by inhibition of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) activity in the IL-1ß/IL-1RI/ß-catenin signaling pathway. These data reinforced the importance of an inflammatory environment in the induction of drug resistance in cancer cells and uncovered a molecular mechanism where the IL-1ß signaling pathway potentiates the acquisition of cisplatin resistance in breast cancer cells.


Subject(s)
Breast Neoplasms/genetics , Drug Resistance, Neoplasm , Interleukin-1beta/metabolism , Signal Transduction , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Breast Neoplasms/immunology , Cisplatin , ErbB Receptors , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Interleukin-1 Type I/metabolism , Up-Regulation , beta Catenin/metabolism
11.
DNA Repair (Amst) ; 65: 42-46, 2018 05.
Article in English | MEDLINE | ID: mdl-29597073

ABSTRACT

p21-activated kinase 1 (PAK1) is a serine/threonine kinase activated by the small GTPases Rac1 and Cdc42. It is located in the chromosome 11q13 and is amplified and/or overexpressed in several human cancer types including 25-30% of breast tumors. This enzyme plays a pivotal role in the control of a number of fundamental cellular processes by phosphorylating its downstream substrates. In addition to its role in the cytoplasm, it is well documented that PAK1 also plays crucial roles in the nucleus participating in mitotic events and gene expression through its association and/or phosphorylation of several transcription factors, transcriptional co-regulators and cell cycle-related proteins, including Aurora kinase A (AURKA), polo-like kinase 1 (PLK1), the forkhead transcription factor (FKHR), estrogen receptor α (ERα), and Snail. More recently, PAK signaling has emerged as a component of the DNA damage response (DDR) as PAK1 activity influences the cellular sensitivity to ionizing radiation and promotes the expression of several genes involved in the Fanconi Anemia/BRCA pathway. This review will focus on the nuclear functions of PAK1 and its role in the regulation of DNA damage repair.


Subject(s)
DNA Repair , p21-Activated Kinases/metabolism , Animals , DNA/metabolism , Humans , Signal Transduction
12.
Biochem Biophys Res Commun ; 490(3): 780-785, 2017 08 26.
Article in English | MEDLINE | ID: mdl-28645612

ABSTRACT

Inflammation has been recently acknowledged as a key participant in the physiopathology of oncogenesis and tumor progression. The inflammatory cytokine IL-1ß has been reported to induce the expression of markers associated with malignancy in breast cancerous cells through Epithelial-Mesenchymal Transition (EMT). Aggressive breast cancer tumors classified as Triple Negative do not respond to hormonal treatment because they lack three crucial receptors, one of which is the estrogen receptor alpha (ERα). Expression of ERα is then considered a good prognostic marker for tamoxifen treatment of this type of cancer, as the binding of this drug to the receptor blocks the transcriptional activity of the latter. Although it has been suggested that inflammatory cytokines in the tumor microenvironment could regulate ERα expression, the mechanism(s) involved in this process have not yet been established. We show here that, in a cell model of breast cancer cells (6D cells), in which the inflammatory cytokine IL-1ß induces EMT by activation of the IL-1ß/IL-1RI/ß-catenin pathway, the up regulation of TWIST1 leads to methylation of the ESR1 gene promoter. This epigenetic modification produced significant decrease of the ERα receptor levels and increased resistance to tamoxifen. The direct participation of IL-1ß in these processes was validated by blockage of the cytokine-induced signaling pathway by wortmannin inactivation of the effectors PI3K/AKT. These results support our previous reports that have suggested direct participation of the inflammatory cytokine IL-1ß in the transition to malignancy of breast cancer cells.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Breast Neoplasms/drug therapy , DNA Methylation , Drug Resistance, Neoplasm , Estrogen Receptor alpha/genetics , Interleukin-1beta/immunology , Tamoxifen/pharmacology , Breast/drug effects , Breast/immunology , Breast/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/immunology , DNA Methylation/drug effects , Estrogen Receptor alpha/immunology , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Phosphatidylinositol 3-Kinases/immunology , Promoter Regions, Genetic/drug effects , Proto-Oncogene Proteins c-akt/immunology , Twist-Related Protein 1/genetics , Twist-Related Protein 1/immunology
13.
Mol Biochem Parasitol ; 208(2): 49-55, 2016 08.
Article in English | MEDLINE | ID: mdl-27318258

ABSTRACT

Entamoeba histolytica trophozoites dwell in the human intestine as comensals although under still unclear circumstances become invasive and destroy the host tissues. For these activities, trophozoites relay on remarkable motility provided by the cytoskeleton organization. Amebic actin and some of its actin-associated proteins are well known, while components of the myosin II molecule, although predicted from the E. histolytica genome, need biochemical and functional characterization. Recently, an amebic essential light myosin II chain, named EhMLCI, was identified and reported to be phosphorylated in tyrosines. The phosphorylated form of the protein was associated with the soluble assembly incompetent conformation of the heavy myosin chains, while the non-phosphorylated protein was identified with filamentous heavy chains, organized in an assembly competent conformation. It was postulated that EhMLCI tyrosine phosphorylation could act as a negative regulator of myosin II activity by its phosphorylation/dephosphorylation cycles. To test this hypothesis, we constructed an expression vector containing an EhMLCI DNA sequence where two tyrosine residues, with strong probability of phosphorylation and fall within the single EF-hand domain that interacts with the N-terminus of myosin II heavy chains, were replaced by phenylalanines. Transfected trophozoites, expressing the mutant MutEhMLCI protein cannot process it, thereby not incorporated into the phosphorylation/dephosphorylation cycles required for myosin II activity, results in motility defective trophozoites.


Subject(s)
Entamoeba histolytica/physiology , Locomotion , Myosin Light Chains/metabolism , Myosin Type II/metabolism , Tyrosine/metabolism , Amino Acid Sequence , Amino Acid Substitution , Chemotaxis , Cytophagocytosis , Mutation , Myosin Light Chains/genetics , Myosin Type II/genetics , Phosphorylation , Protein Transport , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Trophozoites
14.
Int J Parasitol ; 45(14): 915-23, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26343219

ABSTRACT

Entamoeba histolytica trophozoites respond to the presence of IL-8, moving by chemotaxis towards the source of the chemokine. IL-8 binds to the trophozoite membrane and triggers a response that activates signaling pathways that in turn regulate actin/myosin cytoskeleton organisation to initiate migration towards the chemokine, suggesting the presence of a receptor for IL-8 in the parasite. Antibodies directed to the human IL-8 receptor (CXCR1) specifically recognised a 29 kDa protein in trophozoite membrane fractions. The same protein was immunoprecipitated by this antibody from total amebic extracts. Peptide analysis of the immunoprecipitated protein revealed a sequence with high homology to a previously identified amebic outer membrane peroxiredoxin and a motif within the third loop of human CXCR1, which is an important site for IL-8 binding and activation of signaling processes. Immunodetection assays demonstrated that the anti-human CXCR1 antibody binds to the 29 kDa protein in a different but close site to where IL-8 binds to the trophozoite surface membrane, suggesting that human and amebic receptors for this chemokine share common epitopes. In the context of the human intestinal environment, a receptor for IL-8 could be a great advantage for E. histolytica trophozoite survival, as they could reach an inflammatory milieu containing abundant nutrients. In addition, it has been suggested that the high content of accessible thiol groups of the protein and its peroxidase activity could provide protection in the oxygen rich milieu of colonic lesions, allowing trophozoite invasion of other tissues and escape from the host immune response.


Subject(s)
Chemotaxis , Entamoeba histolytica/physiology , Host-Pathogen Interactions , Interleukin-8/metabolism , Membrane Proteins/metabolism , Receptors, Interleukin-8/metabolism , Cell Movement , Entamoeba histolytica/drug effects , Humans , Inflammation/parasitology , Inflammation/pathology , Trophozoites/physiology
15.
Cancer Lett ; 354(1): 164-71, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25135221

ABSTRACT

Interleukin 1ß has been associated with tumor development, invasiveness and metastasis in various types of cancer. However, the molecular mechanisms underlying this association have not been clearly elucidated. The present study is the first to show, in breast cancer cells, that an IL-1ß/IL-1RI/ß-catenin signaling pathway induces ß-catenin accumulation due to GSK3ß inactivation by Akt phosphorylation. Translocation to the nucleus of accumulated ß-catenin and formation of the TCF/Lef/ß-catenin complex induce sequential expression of c-MYC, CCDN1, SNAIL1 and MMP2, leading to up-regulation of proliferation, migration and invasion; all of the processes shown to be required, in cancerous cells, to initiate transition from a non-invading to an invasive phenotype.


Subject(s)
Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Interleukin-1beta/metabolism , Signal Transduction , beta Catenin/metabolism , Active Transport, Cell Nucleus , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Female , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Neoplasm Invasiveness , Phenotype , Polyunsaturated Alkamides/chemistry , Proto-Oncogene Proteins c-akt/metabolism
16.
Int J Breast Cancer ; 2012: 609148, 2012.
Article in English | MEDLINE | ID: mdl-22655200

ABSTRACT

Cancer and inflammation are closely related in tumor malignancy prognosis. Breast cancer MCF-7 cells have a poor invasive phenotype, although, under IL-1ß stimulus, acquire invasive features. Cell response heterogeneity has precluded precise evaluation of the malignant transition. MCF-7A3 cells were selected for high sensitivity to IL-1ß stimulus, uniform expression of CXCR4, and stability of IL1-RI. Structural changes, colony formation ability, proliferation rate, chemotaxis, Matrigel invasion, E-cadherin mRNA expression and protein localization were determined in these cells and in MCF-7 parental cells under the stimulus of IL-1ß. Selected MCF-7A3 cells showed a uniform response to IL-1ß stimulation increasing features of invasive cells such as scattering, colony formation, proliferation, chemokinesis and invasion. Basal expression of E-cadherin mRNA was higher, and IL-1ß stimulus had no further effect at early times of cytokine exposure. Total E-cadherin levels remained unchanged in parental cells, whereas levels decreased, as MCF-7A3 cells became fibroblastoid or scattered. Triton X-100 soluble/insoluble E-cadherin ratios were highly increased in these cells, while, in MCF-7pl cells, ratios could not be correlated with morphology changes. MCF-7A3 cells uniform response to IL-1ß allowed characterization of changes induced by the cytokine that had not been assessed when using heterogeneous cell lines.

SELECTION OF CITATIONS
SEARCH DETAIL
...