Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 14(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35276769

ABSTRACT

Different cocoa populations have demonstrated a protective role in a rat model of allergic asthma by attenuating the immunoglobulin (Ig) E synthesis and partially protecting against anaphylactic response. The aim of this study was to ascertain the effect of diets containing two native Peruvian cocoa populations ("Amazonas Peru" or APC, and "Criollo de Montaña" or CMC) and an ordinary cocoa (OC) on the bronchial compartment and the systemic and mucosal immune system in the same rat model of allergic asthma. Among other variables, cells and IgA content in the bronchoalveolar lavage fluid (BALF) and serum anti-allergen antibody response were analyzed. The three cocoa populations prevented the increase of the serum specific IgG1 (T helper 2 isotype). The three cocoa diets decreased asthma-induced granulocyte increase in the BALF, which was mainly due to the reduction in the proportion of eosinophils. Moreover, both the OC and CMC diets were able to prevent the leukocyte infiltration caused by asthma induction in both the trachea and nasal cavity and decreased the IgA in both fecal and BALF samples. Overall, these results highlight the potential of different cocoa populations in the prevention of allergic asthma.


Subject(s)
Asthma , Cacao , Chocolate , Animals , Immunity , Peru , Rats
2.
Nutrients ; 12(8)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32751867

ABSTRACT

Cocoa contains bioactive components, which vary according to genetic and environmental factors. The present study aimed to ascertain the anti-allergic properties of native Peruvian cocoa populations ("Blanco de Piura" or BPC, "Amazonas Peru" or APC, "Criollo de Montaña" or CMC, "Chuncho" or CCC, and an ordinary cocoa or OC). To do so, after an initial in vitro approach, an in vivo study focused on the induction of an anaphylactic response associated with allergic asthma in Brown Norway rats was carried out. Based on their polyphenol content, antioxidant activity and in vitro effects, the APC and CMC were selected to be included in the in vivo study. Cocoa diets were tested in a model of allergic asthma in which anaphylactic response was assessed by changes in body temperature, motor activity and body weight. The concentration of specific immunoglobulin E (IgE), mast cell protease and leukotrienes was also quantified in serum and/or bronchoalveolar lavage fluid. CMC and OC populations exhibited a protective effect on the allergic asthma rat model as evidenced by means of a partial protection against anaphylactic response and, above all, in the synthesis of IgE and the release of mast cell protease.


Subject(s)
Antioxidants/pharmacology , Asthma/prevention & control , Cacao/chemistry , Polyphenols/pharmacology , Protective Agents/pharmacology , Anaphylaxis/chemically induced , Anaphylaxis/prevention & control , Animals , Asthma/chemically induced , Body Temperature/drug effects , Body Weight/drug effects , Bronchoalveolar Lavage Fluid/chemistry , Diet/methods , Disease Models, Animal , Hypersensitivity/prevention & control , Immunoglobulin E/analysis , Leukotrienes/analysis , Motor Activity/drug effects , Peptide Hydrolases/analysis , Peru , Rats
3.
Int J Mol Sci ; 21(11)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481675

ABSTRACT

Allergic asthma is one of the most common chronic diseases of the airways, however it still remains underdiagnosed and hence undertreated. Therefore, an allergic asthma rat model would be useful to be applied in future therapeutic strategy studies. The aim of the present study was to develop an objective model of allergic asthma in atopic rats that allows the induction and quantification of anaphylactic shock with quantitative variables. Female Brown Norway rats were intraperitoneally sensitized with ovalbumin (OVA), alum and Bordetella pertussis toxin and boosted a week later with OVA in alum. At day 28, all rats received an intranasal challenge with OVA. Anaphylactic response was accurately assessed by changes in motor activity and body temperature. Leukotriene concentration was determined in the bronchoalveolar lavage fluid (BALF), and total and IgE anti-OVA antibodies were quantified in blood and BALF samples. The asthmatic animals' motility and body temperature were reduced after the shock for at least 20 h. The asthmatic animals developed anti-OVA IgE antibodies both in BALF and in serum. These results show an effective and relatively rapid model of allergic asthma in female Brown Norway rats that allows the quantification of the anaphylactic response.


Subject(s)
Asthma/metabolism , Disease Models, Animal , Hypersensitivity/metabolism , Immunoglobulin E/analysis , Administration, Intranasal , Allergens , Animals , Asthma/chemically induced , Body Temperature , Bronchoalveolar Lavage Fluid , Cytokines/metabolism , Epithelial Cells/metabolism , Female , Hypersensitivity, Immediate , Leukotrienes/chemistry , Lung/immunology , Ovalbumin , Rats
4.
Front Physiol ; 10: 1491, 2019.
Article in English | MEDLINE | ID: mdl-31920698

ABSTRACT

Exhausting exercise can have a deleterious effect on the immune system. Nevertheless, the impact of exercise intensity on lymphocyte composition and functionality remains uncertain. The aim of this study was to establish the influence of intensive training on lymphoid tissues (blood, thymus, and spleen) in Wistar rats. Two intensive training programs were performed: a short program, running twice a day for 2 weeks and ending with a final exhaustion test (S-TE group), and a longer program, including two exhaustion tests plus three runs per week for 5 weeks. After this last training program, samples were obtained 24 h after a regular training session (T group), immediately after an additional exhaustion test (TE group) and 24 h later (TE24 group). The composition of lymphocytes in the blood, thymus, and spleen, the function of spleen cells and serum immunoglobulins were determined. In the blood, only the TE group modified lymphocyte proportions. Mature thymocytes' proportions decreased in tissues obtained just after exhaustion. There was a lower percentage of spleen NK and NKT cells after the longer training program. In these rats, the T group showed a reduced lymphoproliferative activity, but it was enhanced immediately after the final exhaustion. Cytokine secretion was modified after the longer training (T group), which decreased IFN-γ and IL-10 secretion but increased that of IL-6. Higher serum IgG concentrations after the longer training program were detected. In conclusion, the intensive training for 5 weeks changed the lymphocyte distribution among primary and secondary lymphoid tissues and modified their function.

SELECTION OF CITATIONS
SEARCH DETAIL
...