Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 34(25)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35354127

ABSTRACT

Ferromagnetic insulators (FM-Is) are the materials of interest for the new generation quantum electronic applications. Here, we have investigated the physical observables depicting FM-I ground states in epitaxial Sm2NiMnO6(SNMO) double perovskite thin films fabricated under different conditions to realize the different level of Ni/Mn anti-site disorders (ASDs). The presence of ASDs immensely influence the characteristic magnetic and anisotropy behaviors in SNMO system by introducing short scale antiferromagnetic interactions in predominant long range FM ordered host matrix. Charge disproportion between cation sites, in the form of Ni2++ Mn4+→ Ni3++ Mn3+, causes mixed valency in both Ni and Mn species, which is found insensitive to ASD concentrations. Temperature dependent photo emission, photo absorption measurements duly combined with cluster model configuration interaction simulations, suggest that the eigenstates of Ni and Mn cations can be satisfactorily described as a linear combination of the unscreeneddnand screeneddn+1L̲(L̲: O 2phole) states. The electronic structure across the Fermi level (EF) exhibits closely spaced Ni 3d, Mn 3dand O 2pstates. From occupied and unoccupied bands, estimated values of the Coulomb repulsion energy (U) and ligand to metal charge transfer energy (Δ), indicate charge transfer insulating nature, where remarkable modification in Ni/Mn 3d-O 2phybridization takes place across the FM transition temperature. Existence of ASD broadens the Ni, Mn 3dspectral features, whereas the spectral positions are found to be unaltered. Hereby, present work demonstrates SNMO thin film as a FM-I system, where the FM state can be tuned by manipulating ASD in the crystal structure, while the I state remains intact.

2.
Rev Sci Instrum ; 92(1): 015115, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33514239

ABSTRACT

The beamline for advanced dichroism of the Istituto Officina dei Materiali-Consiglio Nazionale delle Ricerche, operating at the Elettra synchrotron in Trieste (Italy), works in the extreme ultraviolet-soft x-ray photon energy range with selectable light polarization, high energy resolution, brilliance, and time resolution. The beamline offers a multi-technique approach for the investigation of the electronic, chemical, structural, magnetic, and dynamical properties of materials. Recently, one of the three end stations has been dedicated to experiments based on electron transfer processes at the solid/liquid interfaces and during photocatalytic or electrochemical reactions. Suitable cells to perform soft x-ray spectroscopy in the presence of liquids and reagent gases at ambient pressure were developed. Here, we present two types of static cells working in transmission or in fluorescence yield and an electrochemical flow cell that allows us to carry out cyclic voltammetry in situ and electrodeposition on a working electrode and to study chemical reactions under operando conditions. Examples of x-ray absorption spectroscopy measurements performed under ambient conditions and during electrochemical experiments in liquids are presented.

3.
J Chem Phys ; 150(9): 094702, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30849887

ABSTRACT

We have experimentally determined the lateral registry and geometric structure of free-base porphine (2H-P) and copper-metalated porphine (Cu-P) adsorbed on Cu(111), by means of energy-scanned photoelectron diffraction (PhD), and compared the experimental results to density functional theory (DFT) calculations that included van der Waals corrections within the Tkatchenko-Scheffler approach. Both 2H-P and Cu-P adsorb with their center above a surface bridge site. Consistency is obtained between the experimental and DFT-predicted structural models, with a characteristic change in the corrugation of the four N atoms of the molecule's macrocycle following metalation. Interestingly, comparison with previously published data for cobalt porphine adsorbed on the same surface evidences a distinct increase in the average height of the N atoms above the surface through the series 2H-P, Cu-P, and cobalt porphine. Such an increase strikingly anti-correlates the DFT-predicted adsorption strength, with 2H-P having the smallest adsorption height despite the weakest calculated adsorption energy. In addition, our findings suggest that for these macrocyclic compounds, substrate-to-molecule charge transfer and adsorption strength may not be univocally correlated.

4.
J Chem Phys ; 148(12): 124707, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29604889

ABSTRACT

The electronic structure of the ZrX2 (X = Se, Te) compounds has been studied using photoelectron, resonant photoelectron and X-ray absorption spectroscopy, theoretical calculations of the X-ray absorption spectra, and density of electronic states. It was found that the absorption spectra and valence band spectra are influenced by the chalcogen type. The results of the multiplet calculation of the Zr4+ atom show that the change in the splitting in the crystal field, which is described by the 10Dq parameter, is due to the change in the ratio of covalent and ionic contributions to the chemical bond. The resonance band near the Fermi level in the valence band spectra is observed for ZrTe2 in the Zr 3p-4d resonant excitation mode. The extent of photon energy indicates the charge localization on the Zr atom. Similar resonance band for ZrSe2 is absent; it indicates the presence of a gap at the Fermi level.

5.
Nanoscale ; 7(6): 2450-60, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25565421

ABSTRACT

The emerging fields of graphene-based magnetic and spintronic devices require a deep understanding of the interface between graphene and ferromagnetic metals. This paper reports a detailed investigation at the nanometer level of the Fe-graphene interface carried out by angle-resolved photoemission, high-resolution photoemission from core levels, near edge X-ray absorption fine structure, scanning tunnelling microscopy and spin polarized density functional theory calculations. Quasi-free-standing graphene was grown on Pt(111), and the iron film was either deposited atop or intercalated beneath graphene. Calculations and experimental results show that iron strongly modifies the graphene band structure and lifts its π band spin degeneracy.

6.
Phys Chem Chem Phys ; 16(23): 11719-28, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24811056

ABSTRACT

Silver nanoparticles (AgNPs) functionalized with an organometallic bifunctional thiol containing Pt(ii) centers, generated in situ from trans-trans-[thioacetyl-bistributylphosphine-diethynylbiphenyl-diplatinum(ii)], were synthesized with different sulphur/metal molar ratios (i.e. AgNPs-1 and AgNPs-2) with the aim to obtain nanosystems of different mean size and self-organization behaviour. AgNPs spontaneously self-assemble, giving rise to 2D networks, as previously assessed. In this work a deeper insight into the chemico-physical properties of these AgNPs is proposed by means of synchrotron radiation induced X-ray photoelectron spectroscopy (SR-XPS) and X-ray absorption fine structure spectroscopy (XAFS) techniques. The results are discussed in order to probe the interaction at the interface between a noble metal and a thiol ligand at the atomic level and the aim of this study is to shed light on the chemical structure and self-organization details of nanosystems. The nature of the chemical interaction between the dithiol ligand and the Ag atoms on the nanoparticle surface was investigated by combining SR-XPS (S2p, Ag3d core levels) and XAS (S and Ag K-edges) analysis. UV-visible absorption and emission measurements were also carried out on all samples and compared with TD-DFT calculations so as to get a better understanding of their optical behavior and establish the nature of the excitation and emission processes.


Subject(s)
Metal Nanoparticles/chemistry , Organoplatinum Compounds/chemistry , Silver/chemistry , Sulfhydryl Compounds/chemistry , Molecular Structure , Photoelectron Spectroscopy , Quantum Theory , Synchrotrons , X-Ray Absorption Spectroscopy
7.
Langmuir ; 26(15): 12824-31, 2010 Aug 03.
Article in English | MEDLINE | ID: mdl-20608706

ABSTRACT

The interaction of Pt with CeO(2) layers was investigated by using photoelectron spectroscopy. The 30 nm thick Pt doped CeO(2) layers were deposited simultaneously by rf-magnetron sputtering on a Si(001) substrate, multiwall carbon nanotubes (CNTs) supported by a carbon diffusion layer of a polymer membrane fuel cell and on CNTs grown on the silicon wafer by the CVD technique. The synchrotron radiation X-ray photoelectron spectra showed the formation of cerium oxide with completely ionized Pt(2+,4+) species, and with the Pt(2+)/Pt(4+) ratio strongly dependent on the substrate. The TEM and XRD study showed the Pt(2+)/Pt(4+) ratio is dependent on the film structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...