Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 174: 524-530, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28821100

ABSTRACT

Bromide-free TEMPO-catalyzed oxidation of the primary alcohols by sodium hypochlorite (NaOCl) does not proceed without a prior activation of the catalyst. Here were demonstrate an immediate in situ activation of the catalyst with an equimolar addition of chlorine dioxide (ClO2) relative to TEMPO. Sodium bromide (NaBr) had a similar role in activating the catalyst although NaBr was needed in excess and the activation took several minutes depending on the dosage of NaBr. The activation method, or the concentration of NaBr, did not affect the bulk oxidation rate. The selectivity of the ClO2 initiated oxidation remained high up to NaOCl addition of 3mol/kg bleached birch kraft pulp after which additional loss in yield and depolymerization of cellulose were emphasized with negligible increase in carboxylate content. A carboxylate content of 0.8-1mol/kg, sufficient for easy mechanical fibrillation of the pulp, was achieved under mild conditions with NaOCl addition of 2-2.5mol/kg pulp.

2.
J Integr Plant Biol ; 57(4): 388-95, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25740619

ABSTRACT

We studied in detail the mean microfibril angle and the width of cellulose crystals from the pith to the bark of a 15-year-old Maidenhair tree (Ginkgo biloba L.). The orientation of cellulose microfibrils with respect to the cell axis and the width and length of cellulose crystallites were determined using X-ray diffraction. Raman microscopy was used to compare the lignin distribution in the cell wall of normal/opposite and compression wood, which was found near the pith. Ginkgo biloba showed a relatively large mean microfibril angle, varying between 19° and 39° in the S2 layer, and the average width of cellulose crystallites was 3.1-3.2 nm. Mild compression wood without any intercellular spaces or helical cavities was observed near the pith. Slit-like bordered pit openings and a heavily lignified S2L layer confirmed the presence of compression wood. Ginkgo biloba showed typical features present in the juvenile wood of conifers. The microfibril angle remained large over the 14 annual rings. The entire stem disc, with a diameter of 18 cm, was considered to consist of juvenile wood. The properties of juvenile and compression wood as well as the cellulose orientation and crystalline width indicate that the wood formation of G. biloba is similar to that of modern conifers.


Subject(s)
Cellulose/chemistry , Ginkgo biloba/metabolism , Lignin/metabolism , Wood/metabolism , Ginkgo biloba/anatomy & histology , Ginkgo biloba/cytology , Ginkgo biloba/growth & development , Plant Stems/metabolism , Spectrum Analysis, Raman , Wood/anatomy & histology
3.
Carbohydr Polym ; 101: 792-7, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24299840

ABSTRACT

Fresh birch chips were treated with different concentrations of sodium hydroxide and sodium sulfide in deuterium oxide in typical kraft pulping conditions and the extent of irreversible deuteration of the chips/pulps was followed by Fourier transform infrared (FT-IR) spectroscopy. Water retention values (WRV) of pulps were measured to evaluate accessibility of cellulose. The kraft pulping with deuterium oxide led to significant proton-deuterium exchange that was not reversed when the chips/pulps were washed with water. The deuteration followed a first order dynamics with a maximum obtained in the beginning of delignification stage. Higher dosages of effective alkali resulted in a higher degree of deuteration and lower WRV. An inverse relationship between the extent of deuteration and WRV suggests that both were induced by cellulose microfibril aggregation. Results also indicate that hemicellulose dissolution plays an important role in the induction of cellulose microfibril aggregation, while lignin dissolution has less influence.


Subject(s)
Cellulose/chemistry , Deuterium Oxide/chemistry , Wood/chemistry , Hydrogen-Ion Concentration , Sulfates/chemistry
4.
Carbohydr Polym ; 93(2): 424-9, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23499078

ABSTRACT

During various processing treatments, the accessibility of cellulose in cellulosic fibers reduces, which is often interpreted as cellulose microfibril aggregation. This affects the reactivity of cellulose in further processing to novel cellulosic products such as nanocellulose. In this study, the effect of aqueous treatments at elevated temperatures and various pH on accessibility of an oxygen delignified eucalyptus kraft pulp was evaluated by using deuteration combined with Fourier-transform infrared (FT-IR) spectroscopy and water retention value (WRV) test. Acidic treatments reduced WRV and caused irreversible deuteration of the pulp. However, alkaline treatments increased WRV and caused reversible deuteration of the pulp. Both deuteration and reprotonation of the deuterated pulp followed the same slow, first-order dynamics. This led us to propose that incubation of alkaline cellulosic pulp suspensions at elevated temperatures does not only lead to reduction in accessibility but also to a dynamic interconversion between accessible and inaccessible regions.


Subject(s)
Cell Wall/chemistry , Cellulose/chemistry , Microfibrils/chemistry , Oxygen/chemistry , Acids/chemistry , Alkalies/chemistry , Deuterium Oxide/chemistry , Eucalyptus/chemistry , Hot Temperature , Hydrogen-Ion Concentration , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared , Suspensions/chemistry , Water/chemistry , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...