Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biochem ; 64(1): 43-9, 1997 Jan.
Article in English | MEDLINE | ID: mdl-9015753

ABSTRACT

Involvement of a unique family of cysteine proteases in the multistep apoptotic process has been documented. Cloning of several mammalian genes identifies some components of this cellular response. However, it is currently unclear which protease plays a role as a signal and/or effector of apoptosis. We summarize contributions to the data concerning proteases in Fas-mediated apoptosis.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis/physiology , Caspases , Cysteine Endopeptidases/physiology , Signal Transduction , fas Receptor/metabolism , Animals , Carrier Proteins/metabolism , Caspase 1 , Caspase 3 , Cysteine Endopeptidases/metabolism , Cytoplasm/metabolism , Fas-Associated Death Domain Protein , Humans , Oncogene Proteins/metabolism , Substrate Specificity , Viral Proteins/metabolism
2.
Biochem J ; 308 ( Pt 1): 269-74, 1995 May 15.
Article in English | MEDLINE | ID: mdl-7755574

ABSTRACT

The distribution of cellular unesterified cholesterol was studied in fibroblasts, which had been depleted of plasma membrane sphingomyelin by exposure to exogenous sphingomyelinase. This treatment has previously been shown to induce an increase in cholesterol esterification, a decrease in the biosynthesis of cholesterol, and a decreased susceptibility of cell cholesterol to oxidation with cholesterol oxidase. When the cellular localization of cholesterol was studied with fluorescent filipin staining, sphingomyelin depletion did not cause any visible changes in the filipin-cholesterol staining pattern, suggesting that the major part of cellular cholesterol was retained in the plasma membrane after sphingomyelinase treatment. After the oxidation of cell-surface cholesterol with cholesterol oxidase, the plasma membrane was no longer stained by filipin, but the plasma membrane cholesterol of sphingomyelin-depleted cells appeared to be resistant to oxidation with cholesterol oxidase when sphingomyelinase was used as an oxidation-promoting agent. However, the use of hypotonic buffer or phosphatidylcholine-specific phospholipase C together with cholesterol oxidase resulted in a complete oxidation of the cell-surface cholesterol in sphingomyelin-depleted cells, as evidenced by the filipin-cholesterol staining pattern. Similar results were obtained when [3H]cholesterol-labelled fibroblasts were used for determination of the susceptibility to cholesterol oxidation. The kinetics of [3H]cholesterol oxidation in sphingomyelin-depleted cells with cholesterol oxidase in hypotonic buffer indicated that approximately 85% of the cellular cholesterol still resided in the plasma membrane after sphingomyelin depletion. These results are contradictory to earlier reports on sphingomyelinase-induced changes in cellular cholesterol distribution and suggest that minor changes in the kinetics of cholesterol transport from the plasma membrane to the endoplasmic reticulum may be responsible for the sphingomyelinase-induced changes in the rates of cholesterol metabolism. Whereas the use of phospholipases to promote the oxidation of cholesterol in some instances might lead to misinterpretations, the use of hypotonic buffer together with cholesterol oxidase proved to be a more reliable method for the determination of cellular cholesterol distribution.


Subject(s)
Cholesterol/metabolism , Membrane Lipids/metabolism , Sphingomyelin Phosphodiesterase/pharmacology , Fibroblasts , Filipin , Humans , Microscopy, Fluorescence , Phosphatidylcholines/metabolism
3.
Biochim Biophys Acta ; 1211(3): 317-25, 1994 Mar 24.
Article in English | MEDLINE | ID: mdl-8130265

ABSTRACT

The compound U1866A (3 beta-[2-(diethylamino)ethoxy]androst-5-en-17-one) has been shown to inhibit the cellular transfer of low-density lipoprotein-derived cholesterol from lysosomes to plasma membranes (Liscum and Faust (1989) J. Biol. Chem. 264, 11796-806). We have in this study examined the effects of U18666A on cholesterol translocation from plasma membranes to intracellular membranes. Translocation of plasma membrane cholesterol was induced by degradation of plasma membrane sphingomyelin. The sphingomyelinase-induced activation of the acyl-CoA cholesterol acyl transferase (ACAT) reaction was completely inhibited in a dose-dependent manner by U18666A, both in cultured human skin fibroblasts and baby hamster kidney cells. Half-maximal inhibition (within 60 min) was obtained with 0.5-1 microgram/ml of U18666A. A time-course study indicated that the onset of inhibition was rapid (within 10-15 min), and reversible if U18666A was removed from the incubation mixture. Using a cholesterol oxidase assay, we observed that the extent of plasma membrane cholesterol translocation in sphingomyelinase-treated HSF cells was significantly lowered in the presence of U18666A (at 3 micrograms/ml). The effect of U18666A on cholesterol translocation was also fully reversible when the drug was withdrawn. In mouse Leydig tumor cells, labeled to constant specific activity with [3H]cholesterol, the compound U18666A inhibited in a dose-dependent manner the cyclic AMP-stimulated secretion of [3H]steroid hormones. The effects seen with compound U18666A appeared to be specific for this molecule, since another hydrophobic amine, imipramine, did not in our experiments affect cholesterol translocation or ACAT activation. Since different cell types display sensitivity to U18666A in various intracellular cholesterol transfer processes, they appear to have a common U18666A-sensitive regulatory mechanism.


Subject(s)
Cell Membrane/metabolism , Cholesterol/metabolism , Intracellular Membranes/metabolism , Androstenes/pharmacology , Animals , Anticholesteremic Agents/pharmacology , Cell Line , Cholesterol Esters/metabolism , Cricetinae , Cyclic AMP/antagonists & inhibitors , Humans , Imipramine/pharmacology , In Vitro Techniques , Mice , Secretory Rate/drug effects , Sphingomyelin Phosphodiesterase/pharmacology , Steroids/metabolism
4.
Biochim Biophys Acta ; 1210(1): 97-104, 1993 Dec 02.
Article in English | MEDLINE | ID: mdl-8257725

ABSTRACT

We have in this study examined the effects of sphingosine, a possible secondary degradation product following sphingomyelin hydrolysis, on cholesterol homeostasis in cultured human fibroblasts treated with sphingomyelinase. The activation of cholesterol esterification, which resulted from the degradation of plasma membrane sphingomyelin (by sphingomyelinase), was observed to be effectively blocked by sphingosine (half-maximal dose 6-7 microM). The inhibitory action of sphingosine could not be reproduced with other amines (e.g., dodecyl amine or imipramine). The onset of inhibition of cholesteryl ester formation by sphingosine was rapid (maximal effect within 15 min). Sphingosine itself had no spontaneous effects on the distribution of cellular cholesterol. At concentrations below 10 microM, sphingosine was not cytotoxic, as determined by cellular trypan blue permeability. The inhibitory action of sphingosine on cholesteryl ester formation apparently did not result from a direct inhibition of acyl-CoA cholesterol acyltransferase (ACAT), since the activity of this enzyme was unaffected by sphingosine (10 microM) in a cell-free homogenate, using [14C]oleoyl-CoA as a co-substrate. Sphingosine was also unable to prevent the formation of activated fatty acids (oleoyl-CoA), since acyl-CoA synthetase activity in a cell-free homogenate was not inhibited by sphingosine (at 5 microM). The cellular cholesteryl ester cycle (i.e., the neutral cholesteryl ester hydrolase) was unaffected by sphingosine (at 5 microM). Down-regulation of PKC activity (24 h exposure of cells to 100 nM (62 ng/ml) phorbol ester) did not affect the sphingomyelinase-induced stimulation of [3H]cholesteryl ester formation. In addition, the sphingosine-induced inhibition of [3H]cholesteryl ester formation was not reversed in the presence of phorbol ester (short-term exposures), suggesting that the effect of sphingosine was not mediated via PKC. In conclusion, we have shown that sphingosine is an inhibitor of cholesteryl ester formation in fibroblasts. The inhibition is only seen with intact cells, which may suggest that a secondary metabolite of sphingosine was responsible for the observed inhibition of cholesteryl ester formation.


Subject(s)
Cholesterol Esters/metabolism , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Sphingosine/pharmacology , Biological Transport , Cell Membrane Permeability , Cells, Cultured , Cholesterol/metabolism , Esterification , Fibroblasts/cytology , Fibroblasts/metabolism , Homeostasis , Humans , Hydrolysis , Protein Kinase C/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Trypan Blue
5.
J Lipid Res ; 34(8): 1385-92, 1993 Aug.
Article in English | MEDLINE | ID: mdl-8409769

ABSTRACT

To clarify the role of possible cholesterol/phosphatidylcholine interactions in cellular cholesterol distribution, we have used a phosphatidylcholine-specific phospholipase C from Bacillus cereus to degrade the cell surface phosphatidylcholine of cultured human fibroblasts. Of cellular phosphatidylcholine, approximately 15% was susceptible to degradation by the phospholipase. In spite of the dramatic redistribution of cellular cholesterol that can be observed after sphingomyelin depletion, the degradation of cell surface phosphatidylcholine did not affect the distribution of cholesterol in fibroblasts. In cholesterol-depleted cells as well as in cholesterol-loaded cells, the size of the cell surface cholesterol pool (susceptible to cholesterol oxidase) remained unchanged after phosphatidylcholine degradation. The rate of cholesterol esterification with [3H]oleic acid and the rate of [3H]cholesterol efflux from fibroblasts to high density lipoproteins also remained unchanged after degradation of plasma membrane phosphatidylcholine. An increase in the level of [3H]cholesterol efflux to high density lipoproteins was observed after degradation of plasma membrane sphingomyelin with exogenous sphingomyelinase, in-contrast to earlier reports, where no such effect was observed. The results suggest that interactions between cholesterol and phosphatidylcholine in the fibroblast plasma membranes are less important than cholesterol/sphingomyelin interactions for the asymmetric distribution of cellular cholesterol.


Subject(s)
Cell Membrane/metabolism , Cholesterol/metabolism , Phosphatidylcholines/metabolism , Bacillus cereus/enzymology , Cell Line , Cholesterol Oxidase/metabolism , Esterification , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Humans , Lipoproteins, HDL/metabolism , Lipoproteins, HDL3 , Oleic Acid , Oleic Acids/metabolism , Organelles/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Sphingomyelins/metabolism , Tritium , Type C Phospholipases/metabolism
6.
Biochem J ; 279 ( Pt 1): 29-33, 1991 Oct 01.
Article in English | MEDLINE | ID: mdl-1930148

ABSTRACT

Several different cell types showed increased rates of proliferation and cholesterol mobilization in response to treatment with high-density lipoprotein (HDL). This would suggest that one main function of HDL is the activation of signal pathways in cells. In the current study we have used the fluorescent indicator fura-2 to monitor the level of cytosolic Ca2+ ([Ca2+]i) in human skin fibroblasts. Exposure of subconfluent as well as confluent fibroblasts to HDL3 (20-60 micrograms/ml) resulted in a rapid and transient increase in [Ca2+]i. Sequential additions of HDL3 resulted in diminished rises in [Ca2+]i. The transient rise in [Ca2+]i was observed with HDL prepared from plasma either by conventional ultracentrifugation or by precipitation with dextran sulphate. Chelation of the extracellular Ca2+ with EGTA prior to the addition of HDL3 did not prevent the HDL3-induced rise in [Ca2+]i, suggesting that the mobilized Ca2+ was derived mainly from intracellular stores. Covalent modification of the apoproteins of HDL3 with dimethyl suberimidate or tetranitromethane did not inhibit the HDL3-induced rise in [Ca2+]i. This indicates that the binding of HDL3 to cell surface receptors may not be necessary for the mobilization of intracellular Ca2+. Moreover, the Ca(2+)-releasing effect of HDL3 was not inhibited by the presence of albumin (1%, w/v) in the extracellular medium, suggesting that non-esterified fatty acids were not the cause of the increased [Ca2+]i. The exposure of fibroblasts to lysophosphatidic acid, a potent mitogen and Ca(2+)-releasing agent, before addition of HDL3 completely inhibited the HDL3-induced rise in [Ca2+]i. Furthermore, phorbol 12-myristate 13-acetate blocked the HDL3-induced rise in [Ca2+]i. The results of this study imply that exposure of cells to HDL generates an intracellular signal which is induced by a component of the lipid fraction.


Subject(s)
Calcium/metabolism , Lipoproteins, HDL/metabolism , Albumins/pharmacology , Binding Sites , Chromatography, Thin Layer , Fibroblasts/metabolism , Fluorescent Dyes , Fura-2 , Humans , Lysophospholipids/pharmacology , Tetradecanoylphorbol Acetate/pharmacology
7.
Biochim Biophys Acta ; 1093(1): 7-12, 1991 Jun 07.
Article in English | MEDLINE | ID: mdl-2049410

ABSTRACT

The effects of sphingomyelin degradation on [3H]cholesterol transfer from the cell surface to mitochondria were examined in mouse Leydig tumor cells. These cells were used since they utilize cholesterol for steroid hormone synthesis in the mitochondria, and also possess acyl-CoA: cholesterol acyl transferase (ACAT) activity in the endoplasmic reticulum. Exposure of glutaraldehyde-fixed mouse Leydig tumor cells to sphingomyelinase (50 mU/ml, 60 min) resulted in the degradation of about 50% of cell sphingomyelin, suggesting that only half of the sphingomyelin mass in these cells was located in the exoleaflet of the plasma membrane. The partial sphingomyelin degradation resulted in the translocation of cellular unesterified [3H]cholesterol from plasma membranes (cholesterol oxidase-susceptible) to intracellular compartments (oxidase-resistant). The fraction of [3H]cholesterol that was translocated, i.e., between 20 and 50%, varied with different [3H]cholesterol-labeling methods. Cholesterol translocation induced by sphingomyelin degradation subsequently led to the stimulation of ACAT activity, suggesting that a fraction of cell surface cholesterol was transported to the endoplasmic reticulum. The sphingomyelinase-induced [3H]cholesterol flow from the cell surface to the cell interior was also in part directed to the mitochondria, as evidenced by the increased secretion of [3H]steroid hormones. In addition, the cyclic AMP-induced activation of steroidogenesis was further enhanced by the sphingomyelinase-induced cholesterol translocation. Based on the current results, it seems evident that a significant portion of the translocated [3H]cholesterol made its way from plasma membranes into the mitochondria for steroidogenesis.


Subject(s)
Cholesterol/metabolism , Leydig Cell Tumor/metabolism , Leydig Cells/metabolism , Sphingomyelins/metabolism , Steroids/metabolism , Animals , Cell Membrane/metabolism , Cholesterol Esters/metabolism , Cholesterol, HDL/metabolism , Male , Mice , Mitochondria/metabolism , Oxidation-Reduction , Sphingomyelin Phosphodiesterase/metabolism , Tumor Cells, Cultured
8.
Biochim Biophys Acta ; 1030(2): 251-7, 1990 Dec 14.
Article in English | MEDLINE | ID: mdl-2261487

ABSTRACT

Plasma membrane sphingomyelin in baby hamster kidney (BHK-21) cells was hydrolyzed with sphingomyelinase (Staphylococcus aureus) and the effects on membrane cholesterol translocation and the properties of membrane bound adenylate cyclase and Na+/K(+)-ATPase were determined. Exposure of confluent BHK-21 cells to 0.1 U/ml of sphingomyelinase led to the degradation (at 37 degrees C) of about 60% of cell sphingomyelin. No simultaneous hydrolysis of phosphatidylcholine occurred. The hydrolysis of sphingomyelin subsequently led to the translocation (within 40 min) of about 50-60% of cell [3H]cholesterol from a cholesterol oxidase susceptible pool to an oxidase resistant compartment. The translocation of [3H]cholesterol from the cell surface to intracellular membranes was accompanied by a paralleled increase in [3H]cholesterol ester formation. When cells were first exposed to sphingomyelinase (to degrade sphingomyelin) and then incubated without the enzyme in serum-free media, the mass of cell sphingomyelin decreased initially (by 60%), but then began to increase and reached control levels within 3-4 h. The rapid re-synthesis of sphingomyelin was accompanied by an equally rapid normalization of cell [3H]cholesterol distribution. The re-formation of cell sphingomyelin also led to a decreased content of cellular [3H]cholesterol esters, indicating that unesterified [3H]cholesterol was pulled out of the cholesterol ester cycle and transported to the cell surface. Exposure of BHK-21 cells to sphingomyelinase further led to a dramatically decreased activity of ouabain-sensitive Na+/K(+)-ATPase, whereas forskolin-stimulated adenylate cyclase activity was not affected. The activity of Na+/K(+)-ATPase returned to normal in parallel with the normalization of cell sphingomyelin mass and cholesterol distribution. We conclude that sphingomyelin has profound effects on the steady-state distribution of cell cholesterol, and that manipulations of cell sphingomyelin levels directly and reversibly affects the apparent distribution of cholesterol. Changes in the lipid composition of the plasma membrane also appears to selectively affect important metabolic reactions in that compartment.


Subject(s)
Cell Membrane/metabolism , Cholesterol/metabolism , Kidney/metabolism , Sphingomyelin Phosphodiesterase/pharmacology , Sphingomyelins/metabolism , Adenylyl Cyclases/metabolism , Animals , Cell Membrane/drug effects , Cells, Cultured , Colforsin/pharmacology , Cricetinae , Hydrolysis , Kidney/drug effects , Kinetics , Ouabain/pharmacology , Rubidium Radioisotopes , Tritium
9.
Biochem J ; 271(1): 121-6, 1990 Oct 01.
Article in English | MEDLINE | ID: mdl-2222406

ABSTRACT

Plasma-membrane sphingomyelin appears to be one of the major determinants of the preferential allocation of cell cholesterol into the plasma-membrane compartment, since removal of sphingomyelin leads to a dramatic redistribution of cholesterol within the cell [Slotte & Bierman (1988) Biochem. J. 250, 653-658]. In the present study we examined the long-term effects of sphingomyelin degradation on cholesterol redistribution in cells and determined the reversibility of the process. In a human lung fibroblast-cell line, removal of 80% of the sphingomyelin led to a rapid and transient up-regulation (3-fold) of acyl-CoA:cholesterol acyltransferase (ACAT) activity, and also, within 30 h, to the translocation of about 50% of the cell non-esterified cholesterol from a cholesterol oxidase-susceptible compartment (i.e. the cell surface) to oxidase-resistant compartments. At 49 h after the initial sphingomyelin degradation, the cell sphingomyelin level was back to 45% of the control level, and the direction of cell cholesterol flow was toward the cell surface, although the original distribution was not achieved. In a transformed neuroblastoma cell line (SH-SY5Y), the depletion of sphingomyelin led to a similarly rapid and transient up-regulation of ACAT activity, and to the translocation of about 25% of cell-surface cholesterol into internal membranes (within 3 h). The flow of cholesterol back to the cholesterol oxidase-susceptible pool was rapid, and a pretreatment cholesterol distribution was reached within 20-49 h. Also, the resynthesis of sphingomyelin was faster in SH-SY5Y neuroblastoma cells and reached control levels within 24 h. The findings of the present study show that the cellular redistribution of cholesterol, as induced by sphingomyelin degradation, is reversible and suggest that the normalization of cellular cholesterol distribution is linked to the re-synthesis of sphingomyelin.


Subject(s)
Cholesterol/metabolism , Fibroblasts/metabolism , Neuroblastoma/metabolism , Sphingomyelins/metabolism , Cell Line, Transformed , Cell Membrane/metabolism , Cholesterol Esters/metabolism , Humans , Kinetics , Phospholipids/metabolism , Sphingomyelins/biosynthesis , Sterol O-Acyltransferase/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...