Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neoplasia ; 35: 100858, 2023 01.
Article in English | MEDLINE | ID: mdl-36508875

ABSTRACT

Fibrosarcoma (FSA) are rare soft tissue tumors that display aggressive local behavior and invasive growth leading to high rates of tumor recurrence. While the low incidence in humans hampers detailed understanding of the disease, FSA are frequent in dogs and present potential models for the human condition. However, a lack of in-depth molecular characterization of FSA and unaffected peritumoral tissue (PTT) in both species impedes the translational potential of dogs. To address this shortcoming, we characterized canine FSA and matched skeletal muscle, adipose and connective tissue using laser-capture microdissection (LCM) and LC-MS/MS in 30 formalin-fixed paraffin embedded (FFPE) specimens. Principal component analysis of 3'530 different proteins detected across all samples clearly separates the four tissues, with several targets strongly differentiating tumor from all three PTTs. 25 proteins were exclusively found in tumor tissue in ≥80% of cases. Among these, CD68 (a macrophage marker), Optineurin (OPTN), Nuclear receptor coactivator 5 (NCOA5), RAP1GDS1 (Rap1 GTPase-GDP dissociation stimulator 1) and Stromal cell derived factor 2 like 1 (SDF2L1) were present in ≥90% of FSA. Protein expression across all FSA was highly homogeneous and characterized by MYC and TP53 signaling, hyperactive EIF2 and immune-related changes as well as strongly decreased oxidative phosphorylation and oxidative lipid metabolism. Finally, we demonstrate significant molecular homology between canine FSA and human soft-tissue sarcomas, emphasizing the relevance of studying canine FSA as a model for human FSA. In conclusion, we provide the first detailed overview of proteomic changes in FSA and surrounding PTT with relevance for the human disease.


Subject(s)
Fibrosarcoma , Proteomics , Dogs , Humans , Animals , Chromatography, Liquid , Tandem Mass Spectrometry , Neoplasm Recurrence, Local , Fibrosarcoma/genetics , Fibrosarcoma/metabolism , Fibrosarcoma/pathology
2.
Neoplasia ; 23(4): 400-412, 2021 04.
Article in English | MEDLINE | ID: mdl-33794398

ABSTRACT

Cancer-associated stroma (CAS) profoundly influences progression of tumors including mammary carcinoma (mCA). Canine simple mCA represent relevant models of human mCA, notably also with respect to CAS. While transcriptomic changes in CAS of mCA are well described, it remains unclear to what extent these translate to the protein level. Therefore, we sought to gain insight into the proteomic changes in CAS and compare them with transcriptomic changes in the same tissue. To this end, we analyzed CAS and matched normal stroma using laser-capture microdissection (LCM) and LC-MS/MS in a cohort of 14 formalin-fixed paraffin embedded (FFPE) canine mCAs that we had previously characterized using LCM-RNAseq. Our results reveal clear differences in protein abundance between CAS and normal stroma, which are characterized by changes in the extracellular matrix, the cytoskeleton, and cytokines such as TNF. The proteomics- and RNAseq-based analyses of LCM-FFPE show a substantial degree of correlation, especially for the most deregulated targets and a comparable activation of pathways. Finally, we validate transcriptomic upregulation of LTBP2, IGFBP2, COL6A5, POSTN, FN1, COL4A1, COL12A1, PLOD2, COL4A2, and IGFBP7 in CAS on the protein level and demonstrate their adverse prognostic value for human breast cancer. Given the relevance of canine mCA as a model for the human disease, our analysis substantiates these targets as disease-promoting stromal components with implications for breast cancer in both species.


Subject(s)
Cancer-Associated Fibroblasts/pathology , Mammary Neoplasms, Animal/pathology , Stromal Cells/pathology , Transcriptome/genetics , Animals , Cytokines/metabolism , Cytoskeleton/physiology , Disease Models, Animal , Dogs , Extracellular Matrix/physiology , Female , Gene Expression Profiling , Laser Capture Microdissection , Tandem Mass Spectrometry , Tumor Microenvironment/physiology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...