Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Phys Rev E ; 102(1-1): 012903, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32794965

ABSTRACT

In geotechnics as well as in planetary science, it is important to find a means by which to protect a base from impacts of micrometeoroids. In the moon, for example, covering a moon base with regolith, and housing such regolith by movable bounding walls, could work as a stress-leaking shield. Using a numerical model, by performing impacts on a granular material housed in a rectangular container made with one movable sidewall, it is found that such wall mobility serves as a good means for controlling the maximum force exerted at the container's base. We show that the force exerted at the container's base decreases as the movable wall decreases in mass, and it follows a Janssen-like trend. Moreover, by making use of a dynamically defined redirecting coefficient K(X), proposed by Windows-Yule et al. [Phys. Rev. E 100, 022902 (2019)2470-004510.1103/PhysRevE.100.022902], which depends on the container's width X, we propose a model for predicting the maxima measured at the container's base. The model depends on the projectile and granulate properties, and the container's geometry.

2.
Phys Rev E ; 100(2-1): 022902, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31574658

ABSTRACT

The Janssen model of stress redistribution within laterally bounded particulate assemblies is a longstanding and valuable theoretical framework, widely used in the design of industrial systems. However, the model relies on the assumption of a static packing of particles and has never been tested in a truly dynamic regime nor for a constraining system whose geometry is dynamically altered. In this paper, we explore the pressure distributions of granular beds housed within a container possessing a laterally mobile sidewall, allowing the depth, height, and cross-sectional areas of the systems studied to be dynamically altered, thus, inducing particle rearrangements and flow in the particulate system constrained thereby. We demonstrate that the systems studied can be successfully described by the Janssen model across a wide range of system expansion rates, including those for which liquidlike flow is clearly observed and propose an extension to the model allowing for an improved characterization of constrained dynamic systems.

3.
Biosens Bioelectron ; 138: 111284, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31103932

ABSTRACT

We present an enhanced version of our previously engineered MyoRobot system for reliable, versatile and automated investigations of skeletal muscle or linear polymer material (bio)mechanics. That previous version already replaced strenuous manual protocols to characterize muscle biomechanics properties and offered automated data analysis. Here, the system was further improved for precise control over experimental temperature and muscle single fiber sarcomere length. Moreover, it also now features the calculation of fiber cross-sectional area via on-the-fly optical diameter measurements using custom-engineered microscope optics. With this optical systems integration, the MyoRobot 2.0 allows to tailor a wealth of recordings for relevant physiological parameters to be sequentially executed in living single myofibers. Research questions include assessing temperature-dependent performance of active or passive biomechanics, or automated control over length-tension or length-velocity relations. The automatically obtained passive stress-strain relationships and elasticity modules are important parameters in (bio)material science. From the plethora of possible applications, we validated the improved MyoRobot 2.0 by assessing temperature-dependent myofibrillar Ca2+ sensitivity, passive axial compliance and Young's modulus. We report a Ca2+ desensitization and a narrowed dynamic range at higher temperatures in murine M. extensor digitorum longus single fibers. In addition, an increased axial mechanical compliance in single muscle fibers with Young's moduli between 40 - 60 kPa was found, compatible with reported physiological ranges. These applications demonstrate the robustness of our MyoRobot 2.0 for facilitated single muscle fiber biomechanics assessment.


Subject(s)
Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Optical Devices , Software , Animals , Biomechanical Phenomena , Biosensing Techniques/instrumentation , Calcium/metabolism , Kinetics , Mice , Optical Imaging , Sarcomeres/physiology , Temperature
4.
Rev Sci Instrum ; 89(7): 075103, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30068123

ABSTRACT

A new experimental facility has been designed and constructed to study driven granular media in a low-gravity environment. This versatile instrument, fully automatized, with a modular design based on several interchangeable experimental cells, allows us to investigate research topics ranging from dilute to dense regimes of granular media such as granular gas, segregation, convection, sound propagation, jamming, and rheology-all without the disturbance by gravitational stresses active on Earth. Here, we present the main parameters, protocols, and performance characteristics of the instrument. The current scientific objectives are then briefly described and, as a proof of concept, some first selected results obtained in low gravity during parabolic flight campaigns are presented.

5.
Biosens Bioelectron ; 102: 589-599, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29245144

ABSTRACT

We engineered an automated biomechatronics system, MyoRobot, for robust objective and versatile assessment of muscle or polymer materials (bio-)mechanics. It covers multiple levels of muscle biosensor assessment, e.g. membrane voltage or contractile apparatus Ca2+ ion responses (force resolution 1µN, 0-10mN for the given sensor; [Ca2+] range ~ 100nM-25µM). It replaces previously tedious manual protocols to obtain exhaustive information on active/passive biomechanical properties across various morphological tissue levels. Deciphering mechanisms of muscle weakness requires sophisticated force protocols, dissecting contributions from altered Ca2+ homeostasis, electro-chemical, chemico-mechanical biosensors or visco-elastic components. From whole organ to single fibre levels, experimental demands and hardware requirements increase, limiting biomechanics research potential, as reflected by only few commercial biomechatronics systems that can address resolution, experimental versatility and mostly, automation of force recordings. Our MyoRobot combines optical force transducer technology with high precision 3D actuation (e.g. voice coil, 1µm encoder resolution; stepper motors, 4µm feed motion), and customized control software, enabling modular experimentation packages and automated data pre-analysis. In small bundles and single muscle fibres, we demonstrate automated recordings of (i) caffeine-induced-, (ii) electrical field stimulation (EFS)-induced force, (iii) pCa-force, (iv) slack-tests and (v) passive length-tension curves. The system easily reproduces results from manual systems (two times larger stiffness in slow over fast muscle) and provides novel insights into unloaded shortening velocities (declining with increasing slack lengths). The MyoRobot enables automated complex biomechanics assessment in muscle research. Applications also extend to material sciences, exemplarily shown here for spider silk and collagen biopolymers.


Subject(s)
Biosensing Techniques/methods , Muscle Contraction/physiology , Muscles/chemistry , Biocompatible Materials/chemistry , Biomechanical Phenomena , Calcium/chemistry , Elasticity/physiology , Electric Stimulation , Homeostasis , Humans , Muscles/physiology
6.
Sci Rep ; 6: 22520, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-27001207

ABSTRACT

Downhill flows of granular matter colliding in the lowest point of a valley, may induce a self-organized jet. By means of a quasi two-dimensional experiment where fine grained sand flows in a vertically sinusoidally agitated cylinder, we show that the emergent jet, that is, a sheet of ejecta, does not follow the frequency of agitation but reveals subharmonic response. The order of the subharmonics is a complex function of the parameters of driving.

7.
J Phys Chem B ; 117(4): 1166-75, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23286368

ABSTRACT

We investigate the structure and adsorption of amphiphilic molecules at planar walls modified by tethered chain molecules using density functional theory. The molecules are modeled as spheres composed of a hydrophilic and hydrophobic part. The pinned chains are treated as tangentially jointed spheres that can interact with fluid molecules via orientation-dependent forces. Our density functional approach involves fundamental measure theory, thermodynamic perturbation theory for chains, and a mean-field approximation for describing the anisotropic interactions. We study the adsorption of the particles, focusing on the competition between the external field (due to the surface and due to attached chain molecules) and the interaction-induced ordering phenomena.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 1): 011301, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21867158

ABSTRACT

The response of an oscillating granular damper to an initial perturbation is studied using experiments performed in microgravity and granular dynamics simulations. High-speed video and image processing techniques are used to extract experimental data. An inelastic hard sphere model is developed to perform simulations and the results are in excellent agreement with the experiments. In line with previous work, a linear decay of the amplitude is observed. Although this behavior is typical for a friction-damped oscillator, through simulation it is shown that this effect is still present even when friction forces are absent. A simple expression is developed which predicts the optimal damping conditions for a given amplitude and is independent of the oscillation frequency and particle inelasticities.

9.
Eur Phys J E Soft Matter ; 27(1): 107-14, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18839235

ABSTRACT

The collision of frictional granular particles may be described by an interaction force whose normal component is that of viscoelastic spheres while the tangential part is described by the model by Cundall and Strack (Géotechnique 29, 47 (1979)) being the most popular tangential collision model in Molecular Dynamics simulations. Albeit being a rather complicated model, governed by 5 phenomenological parameters and 2 independent initial conditions, we find that it is described by 3 independent parameters only. Surprisingly, in a wide range of parameters the corresponding coefficient of tangential restitution, epsilont, is well described by the simple Coulomb law with a cut-off at epsilont = 0. A more complex behavior of the coefficient of restitution as a function on the normal and tangential components of the impact velocity, gn and gt, including negative values of epsilont, is found only for very small ratio gt/gn. For the analysis presented here we neglect dissipation of the interaction in normal direction.

10.
Phys Rev Lett ; 98(12): 128001, 2007 Mar 23.
Article in English | MEDLINE | ID: mdl-17501156

ABSTRACT

In a granular gas of rough particles the axis of rotation is shown to be correlated with the translational velocity of the particles. The average relative orientation of angular and linear velocities depends on the parameters which characterize the dissipative nature of the collision. We derive a simple theory for these correlations and validate it with numerical simulations for a wide range of coefficients of normal and tangential restitution. The limit of smooth spheres is shown to be singular: even an arbitrarily small roughness of the particles gives rise to orientational correlations.

11.
Eur Phys J E Soft Matter ; 12(4): 531-41, 2003 Dec.
Article in English | MEDLINE | ID: mdl-15007750

ABSTRACT

Assume in a sample of size M one finds M(i) representatives of species i with i = 1..N*. The normalized frequency pi* triple bond Mi/M, based on the finite sample, may deviate considerably from the true probabilities p(i). We propose a method to infer rank-ordered true probabilities r(i) from measured frequencies M(i). We show that the rank-ordered probabilities provide important informations on the system, e.g., the true number of species, the Shannon- and the Renyi-entropies.


Subject(s)
Algorithms , Data Interpretation, Statistical , Models, Statistical , Numerical Analysis, Computer-Assisted , Sample Size , Stochastic Processes , Quality Control , Reproducibility of Results , Sensitivity and Specificity
12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(1 Pt 1): 011308, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11461250

ABSTRACT

Given an assembly of viscoelastic spheres with certain material properties, we raise the question how the macroscopic properties of the assembly will change if all lengths of the system, i.e. radii, container size etc., are scaled by a constant. The result leads to a method to scale down experiments to lab size.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(2 Pt 1): 021505, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11308496

ABSTRACT

The transmission of kinetic energy through chains of inelastically colliding spheres is investigated for the case of constant coefficient of restitution epsilon=const and impact-velocity-dependent coefficient epsilon(v) for viscoelastic particles. We derive a theory for the optimal distribution of particle masses which maximize the energy transfer along the chain and check it numerically. We found that for epsilon=const, the mass distribution is a monotonous function which does not depend on the value of epsilon. In contrast, for epsilon(v) the mass distribution reveals a pronounced maximum, depending on the particle properties and on the chain length. The system investigated demonstrates that even for small and simple systems, the velocity dependence of the coefficient of restitution may lead to new effects with respect to the same systems under the simplifying approximation epsilon=const.

14.
Article in English | MEDLINE | ID: mdl-11088595

ABSTRACT

When granular material is shaken vertically one observes convection, surface fluidization, spontaneous heap formation, and other effects. There is a controversial discussion in the literature as to whether there exists a threshold for the Froude number Gamma=A(0)omega(2)(0)/g, below which these effects cannot be observed anymore. By means of theoretical analysis and computer simulation we find that there is no such single threshold. Instead, we propose a modified criterion that coincides with the critical Froude number Gamma(c)=1 for small driving frequency omega(0).

15.
Article in English | MEDLINE | ID: mdl-11031611

ABSTRACT

The velocity distribution in a homogeneously cooling granular gas has been studied in the viscoelastic regime, when the restitution coefficient of colliding particles depends on the impact velocity. We show that for viscoelastic particles a simple scaling hypothesis is violated, i.e., that the time dependence of the velocity distribution does not scale with the mean square velocity as in the case of particles interacting via a constant restitution coefficient. The deviation from the Maxwellian distribution does not depend on time monotonically. For the case of small dissipation we detected two regimes of evolution of the velocity distribution function: Starting from the initial Maxwellian distribution, the deviation first increases with time on a collision time scale saturating at some maximal value; then it decays to zero on a much larger time scale which corresponds to the temperature relaxation. For larger values of the dissipation parameter there appears an additional intermediate relaxation regime. Analytical calculations for small dissipation agree well with the results of a numerical analysis.

16.
Article in English | MEDLINE | ID: mdl-11046456

ABSTRACT

The coefficient of self-diffusion for a homogeneously cooling granular gas changes significantly if the impact-velocity dependence of the restitution coefficient epsilon is taken into account. For the case of a constant epsilon the particles spread logarithmically slowly with time, whereas a velocity-dependent coefficient yields a power law time dependence. The impact of the difference in these time dependences on the properties of a freely cooling granular gas is discussed.

17.
Article in English | MEDLINE | ID: mdl-11970301

ABSTRACT

We perform a dimension analysis for colliding viscoelastic spheres to show that the coefficient of normal restitution epsilon depends on the impact velocity g as epsilon=1-gamma(1)g(1/5)+gamma(2)g(2/5)-/+..., in accordance with recent findings. We develop a simple theory to find explicit expressions for coefficients gamma(1) and gamma(2). Using these and few next expansion coefficients for epsilon(g) we construct a Padé approximation for this function which may be used for a wide range of impact velocities where the concept of the viscoelastic collision is valid. The obtained expression reproduces quite accurately the existing experimental dependence epsilon(g) for ice particles.

20.
Biosystems ; 39(2): 117-25, 1996.
Article in English | MEDLINE | ID: mdl-8866048

ABSTRACT

A representation of the genetic code as a six-dimensional Boolean hypercube is described. This structure is the result of the hierarchical order of the interaction energies of the bases in codon-anticodon recognition. In this paper it is applied to study molecular evolution in vivo and in vitro. In the first case we compared aligned positions in homologous protein sequences and found two different behaviors: (a) There are sites in which the different amino acids may be explained by one or two 'attractor nodes' (coding for the dominating amino acid(s)) and their one-bit neighbors in the codon hypercube; and (b) There are sites in which the amino acids correspond to codons located in closed paths in the hypercube. In the second case we studied the 'Sexual PCR'1 experiment described by Stemmer [Stemmer (1994)] and found that the success of this combination of usual PCR and recombination is in part due to the Gray code structure of the genetic code.


Subject(s)
Amino Acids/genetics , Genetic Code , Mutation , Anticodon , Codon , Polymerase Chain Reaction , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...