Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 13342, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042581

ABSTRACT

Management of protein homeostasis by the ubiquitin-proteasome system is critical for atherosclerosis development. Recent studies showed controversial results on the role of immunoproteasome (IP) subunit ß5i/LMP7 in maintenance of protein homeostasis under cytokine induced oxidative stress. The present study aimed to investigate the effect of ß5i/LMP7-deficiency on the initiation and progression of atherosclerosis as a chronic inflammatory, immune cell driven disease. LDLR-/-LMP7-/- and LDLR-/- mice were fed a Western-type diet for either 6 or 24 weeks to induce early and advanced stage atherosclerosis, respectively. Lesion burden was similar between genotypes in both stages. Macrophage content and abundance of polyubiquitin conjugates in aortic root plaques were unaltered by ß5i/LMP7-deficiency. In vitro experiments using bone marrow-derived macrophages (BMDM) showed that ß5i/LMP7-deficiency did not influence macrophage polarization or accumulation of polyubiquitinated proteins and cell survival upon hydrogen peroxide and interferon-γ treatment. Analyses of proteasome core particle composition by Western blot revealed incorporation of standard proteasome subunits in ß5i/LMP7-deficient BMDM and spleen. Chymotrypsin-, trypsin- and caspase-like activities assessed by using short fluorogenic peptides in BMDM whole cell lysates were similar in both genotypes. Taken together, deficiency of IP subunit ß5i/LMP7 does not disturb protein homeostasis and does not aggravate atherogenesis in LDLR-/- mice.


Subject(s)
Atherosclerosis/etiology , Atherosclerosis/metabolism , Proteasome Endopeptidase Complex/metabolism , Animals , Atherosclerosis/pathology , Disease Models, Animal , Disease Progression , Macrophage Activation/genetics , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Knockout , Proteasome Endopeptidase Complex/deficiency , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...