Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 89(1): 38-53, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38214985

ABSTRACT

The current study investigates the combined treatment of wastewater of anaerobic digestate and landfill leachate, using deammonification and coagulation/flocculation processes. The deammonification section studies the performance of a full-scale deammonification plant in nitrogen and chemical oxygen demand (COD) removal, monitored over 2 years. For further COD reduction from the deammonification effluent (DE) to meet the environmental regulatory standards, coagulation/flocculation using three different Al-based coagulants was used to treat the DE. Results revealed that the deammonification plant showed 80% average ammonium removal from the mixed feed over the study period. Additionally, 30% of the feed COD was removed in the deammonification plant. COD analysis after treatment using coagulants revealed that the polyaluminum chloride modified with Fe had the best performance in reducing COD to meet the environmental standards. Excitation-emission matrix-parallel factor analysis (EEM-PARAFAC) of the dissolved organic material (DOM) samples indicated that fluorescents were the compounds mostly affected by the coagulant types. DOM analysis using 2D correlation Fourier-transform infrared spectroscopy revealed that the applied coagulants showed minor differences in removing different functional groups, despite having different COD reduction performance. Wastewater elemental analysis indicated elevated metal concentrations in low pH conditions (<6) due to re-stabilization of the flocs using coagulants.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Wastewater , Anaerobiosis , Metals/analysis , Biological Oxygen Demand Analysis
2.
Water Res ; 218: 118517, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35512538

ABSTRACT

Sidestream partial nitritation and deammonification (pN/A) of high-strength ammonia wastewater is a well-established technology. Its expansion to the mainstream is, however mainly impeded by poor retention of anaerobic ammonia oxidizing bacteria (AnAOB), insufficient repression of nitrite oxidizing bacteria (NOB) and difficult control of soluble chemical oxygen demand and nitrite levels. At the municipal wastewater treatment plant in Strass (Austria) the microbial consortium was exhaustively monitored at full-scale over one and a half year with regular transfer of sidestream DEMON® biomass and further retention and enrichment of granular anammox biomass via hydrocyclone operation. Routine process parameters were surveyed and the response and evolution of the microbiota was followed by molecular tools, ex-situ activity tests and further, AnAOB quantification through particle tracking and heme measurement. After eight months of operation, the first anaerobic, simultaneous depletion of ammonia and nitrite was observed ex-situ, together with a direction to higher nitrite generation (68% of total NOx-N) as compared to nitrate under aerobic conditions. Our dissolved oxygen (DO) scheme allowed for transient anoxic conditions and had a strong influence on nitrite levels and the NOB community, where Nitrobacter eventually dominated Nitrospira. The establishment of a minor but stable AnAOB biomass was accompanied by the rise of Chloroflexi and distinct emergence of Chlorobi, a trend not seen in the sidestream system. Interestingly, the most pronounced switch in the microbial community and noticeable NOB repression occurred during unfavorable conditions, i.e. the cold winter season and high organic load. Further abatement of NOB was achieved through bioaugmentation of aerobic ammonia oxidizing bacteria (AerAOB) from the sidestream-DEMON® tank. Performance of the sidestream pN/A was not impaired by this operational scheme and the average volumetric nitrogen removal rate of the mainstream even doubled in the second half of the monitoring campaign. We conclude that a combination of both, regular sidestream-DEMON® biomass transfer and granular SRT increase via hydrocyclone operation was crucial for AnAOB establishment within the mainstream.


Subject(s)
Ammonia , Nitrites , Bacteria , Biomass , Bioreactors , Nitrogen , Oxidation-Reduction , Sewage , Wastewater/analysis
3.
Water Res ; 143: 270-281, 2018 10 15.
Article in English | MEDLINE | ID: mdl-29986237

ABSTRACT

Treatment of sewage sludge with a thermal hydrolysis process (THP) followed by anaerobic digestion (AD) enables to boost biogas production and minimize residual sludge volumes. However, the reject water can cause inhibition to aerobic and anoxic ammonium-oxidizing bacteria (AerAOB & AnAOB), the two key microbial groups involved in the deammonification process. Firstly, a detailed investigation elucidated the impact of different organic fractions present in THP-AD return liquor on AerAOB and AnAOB activity. For AnAOB, soluble compounds linked to THP conditions and AD performance caused the main inhibition. Direct inhibition by dissolved organics was also observed for AerAOB, but could be overcome by treating the filtrate with extended aerobic or anaerobic incubation or with activated carbon. AerAOB additionally suffered from particulate and colloidal organics limiting the diffusion of substrates. This was resolved by improving the dewatering process through an optimized flocculant polymer dose and/or addition of coagulant polymer to better capture the large colloidal fraction, especially in case of unstable AD performance. Secondly, a new inhibition model for AerAOB included diffusion-limiting compounds based on the porter-equation, and achieved the best fit with the experimental data, highlighting that AerAOB were highly sensitive to large colloids. Overall, this paper for the first time provides separate identification of organic fractions within THP-AD filtrate causing differential types of inhibition. Moreover, it highlights the combined effect of the performance of THP, AD and dewatering on the downstream autotrophic nitrogen removal kinetics.


Subject(s)
Bacteria/metabolism , Bioreactors/microbiology , Nitrites/metabolism , Waste Disposal, Fluid/methods , Ammonium Compounds/metabolism , Anaerobiosis , Autotrophic Processes , Diffusion , Hydrolysis , Models, Theoretical , Nitrogen/metabolism , Sewage/chemistry , Waste Disposal, Fluid/instrumentation
4.
Bioresour Technol ; 198: 540-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26433150

ABSTRACT

Converting waste to resource may mitigate environmental pollution and global resource limitation. The platform chemical lactic acid can be produced from biowaste and its liquid fraction after solid-liquid separation. A fermentation step for lactic acid production prior to the conversion of biowaste to methane and organic fertilizer would increase the biowaste's value. Despite the huge potential and promising results of the treatment procedure, the reasons for efficiency loss observed previously need to be addressed in order to pave the way for an up-scaling of the fermentation process. Therefore, biowaste was fermented applying pH control, acid extraction and glucose addition in order to counteract reasons such as acidification, end-product inhibition and carbon limitation, respectively. The fermentation was competitive compared to other renewable lactic acid production substrates and reached a maximum productivity of >5 g Clactic acidg(-1)Ch(-1) and a concentration exceeding 30 g L(-1). A combination of acidification and end-product inhibition was identified as major obstacle. Lactobacillus crispatus and its closest relatives were identified as key lactic acid producers within the process using Miseq Illumina sequencing.


Subject(s)
Biotechnology/methods , Lactic Acid/biosynthesis , Methane/biosynthesis , Waste Management/methods , Fermentation , Hydrogen-Ion Concentration , Lactobacillus/metabolism
5.
Appl Microbiol Biotechnol ; 99(7): 3029-40, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25652656

ABSTRACT

Limited availability of resources and increased amounts of waste coupled with an ever-increasing demand for raw materials are typical characteristics of our times. As such, there is an urgent need to accordingly update waste treatment technology. The aim of this study was to determine whether a separate treatment of the liquid and the solid fraction of biowaste could enhance overall efficiency. Liquid fractions obtained from two different separation procedures were fermented at a pH of 5 and uncontrolled pH conditions for 72 h. The fermentation conditions leading to highest lactic acid productivity and yield were evaluated. The substrates gained by both separation procedures showed efficient lactic acid production up to <25 g L(-1). The pH control increased lactic acid concentration by about 27 %. Furthermore, quantitative real-time PCR analyses revealed stronger Lactobacilli growth in these fermentations. As identified via Illumina sequencing Lactobacillus delbrueckii and its closest relatives seemed to drive the fermentation independent of the substrate. These results could help to improve today's resourcing concept by providing a separate treatment of the liquid and solid biowaste fraction.


Subject(s)
Lactic Acid/metabolism , Lactobacillus delbrueckii/metabolism , Microbial Consortia , Refuse Disposal/methods , Waste Disposal, Fluid/methods , Anaerobiosis , Austria , Fermentation , Hydrogen-Ion Concentration , Lactobacillus delbrueckii/genetics , Lactobacillus delbrueckii/growth & development , Phylogeny , RNA, Ribosomal, 16S , Real-Time Polymerase Chain Reaction , Waste Products
6.
Bioresour Technol ; 175: 142-51, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25459815

ABSTRACT

In order to investigate the feasibility of producing lactic acid from municipal organic solid waste different pH values (4-7) and temperatures (37°C and 55°C) were tested. For the evaluation of fermentation conditions the chemical, physical, and microbial characters were monitored over a period of 7days. Quantitative real time PCR, PCR-DGGE, and next generation sequencing of a 16S rRNA gene library were applied to identify the key players of the lactic acid production and their association. Lactobacillus acidophilus and its closest relatives were found to be efficient lactic acid producers (>300mM) under most suitable fermentation conditions tested in this study: 37°C with either uncontrolled pH or at a pH of 5. These data provide the first step in the realization of the idea "reuse, reduce, and recycle" of municipal organic solid waste.


Subject(s)
Lactic Acid/metabolism , Refuse Disposal/methods , Solid Waste , Fermentation , Industrial Waste
7.
Water Res ; 68: 194-205, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25462728

ABSTRACT

Six methodologically different approaches were evaluated and compared regarding their suitability to quantify and characterise granular anammox biomass. The investigated techniques were gravimetric analysis (GA), activity measurements (AM), Coulter counter analysis (CC), quantitative PCR (qPCR), heme protein quantification (HQ) and the novel image analysis technique Particle Tracking (PT). The focus was set on the development of fast, economic and user-friendly approaches for potential implementation in regular wastewater treatment plant (WWTP) monitoring. To test the effectiveness of each technique, two sample matrices were chosen at the WWTP Strass (Austria): i) sludge liquor of the DEMON tank, treating ammonium-rich reject water of anaerobic digestion via the deammonification process and rich in anammox biomass (SL), and ii) the mainstream biological stage, that has been enriched with anammox biomass for more than two years (B). In both of these plants hydro-cyclones are installed for density-fractioning of the sludge into a low- and a high-density fraction, thus leading to a characteristic anammox distribution in the investigated sample set. All investigated methods could statistically discriminate the SL samples. Heme quantification and qPCR were also able to correctly classify the B-samples and both methods showed a Pearson's correlation coefficient of 0.81. An asset of the PT and CC method is the additional qualitative characterization of granule size distribution that can help to better understand and optimise general process operation (cyclone operation duration and construction characteristics). In combination these two methods were able to elucidate the relationship of gross granule volume and actual biomass, excluding the dead volume of inner cavities and exopolymers. We found a linear sphere-equivalent-radius correction factor (3.96 ± 0.15) for investigated anammox granules, that can be used for the fast and reliable PT technique to avoid biomass overestimation. We also recommend routine HQ and PT analysis as ideal monitoring strategy for anammox abundance in wastewater facilities with the HQ technique entailing the further advantage of being also suited for non-granular anammox biomass.


Subject(s)
Ammonium Compounds/metabolism , Bacteria/metabolism , Biomass , Waste Disposal, Fluid/methods , Anaerobiosis , Austria , Oxidation-Reduction , Sewage/microbiology , Wastewater/microbiology
8.
Antimicrob Agents Chemother ; 57(4): 1583-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23318794

ABSTRACT

Amphotericin B (AMB) is the predominant antifungal drug, but the mechanism of resistance is not well understood. We compared the in vivo virulence of an AMB-resistant Aspergillus terreus (ATR) isolate with that of an AMB-susceptible A. terreus isolate (ATS) using a murine model for disseminated aspergillosis. Furthermore, we analyzed the molecular basis of intrinsic AMB resistance in vitro by comparing the ergosterol content, cell-associated AMB levels, AMB-induced intracellular efflux, and prooxidant effects between ATR and ATS. Infection of immunosuppressed mice with ATS or ATR showed that the ATS strain was more lethal than the ATR strain. However, AMB treatment improved the outcome in ATS-infected mice while having no positive effect on the animals infected with ATR. The in vitro data demonstrated that ergosterol content is not the molecular basis for AMB resistance. ATR absorbed less AMB, discharged more intracellular compounds, and had better protection against oxidative damage than the susceptible strain. Our experiments showed that ergosterol content plays a minor role in intrinsic AMB resistance and is not directly associated with intracellular cell-associated AMB content. AMB might exert its antifungal activity by oxidative injury rather than by an increase in membrane permeation.


Subject(s)
Amphotericin B/therapeutic use , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Aspergillus/pathogenicity , Drug Resistance, Fungal/physiology , Amphotericin B/pharmacology , Animals , Antifungal Agents/pharmacology , Aspergillus/drug effects , Aspergillus/metabolism , Drug Resistance, Fungal/genetics , Lipid Peroxidation/drug effects , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests
9.
Biometals ; 16(4): 567-81, 2003 Dec.
Article in English | MEDLINE | ID: mdl-12779242

ABSTRACT

Efficient removal of dissolved nickel was observed in a biologically active moving-bed 'MERESAFIN' sand filter treating rinsing water from an electroless nickel plating plant. Although nickel is fully soluble in this waste water, its passage through the sand filter promoted rapid removal of approximately 1 mg Ni/l. The speciation of Ni in the waste water was modelled; the most probable precipitates forming under the conditions in the filter were predicted using PHREEQC. Analyses of the Ni-containing biosludge using chemical, electron microscopical and X-ray spectroscopic techniques confirmed crystallisation of nickel phosphate as arupite (Ni3(PO4)2 x 8H2O), together with hydroxyapatite within the bacterial biofilm on the filter sand grains. Biosorption contributed less than 1% of the overall sequestered nickel. Metabolising bacteria are essential for the process; the definitive role of specific components of the mixed population is undefined but the increase in pH promoted by metabolic activity of some microbial components is likely to promote nickel desolubilisation by others.


Subject(s)
Biofilms , Filtration/instrumentation , Filtration/methods , Industrial Waste/analysis , Nickel/isolation & purification , Silicon Dioxide , Water/chemistry , Hydrogen-Ion Concentration , Models, Biological , Nickel/analysis , Nickel/chemistry , Nickel/metabolism , Sewage/chemistry , Sewage/microbiology , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...