Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Cell Mol Biol Lett ; 28(1): 97, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030974

ABSTRACT

Arachidonic acid 15-lipoxygenases (ALOX15) play a role in mammalian erythropoiesis but they have also been implicated in inflammatory processes. Seven intact Alox genes have been detected in the mouse reference genome and the mouse Alox15 gene is structurally similar to the orthologous genes of other mammals. However, mouse and human ALOX15 orthologs have different functional characteristics. Human ALOX15 converts C20 polyenoic fatty acids like arachidonic acid mainly to the n-6 hydroperoxide. In contrast, the n-9 hydroperoxide is the major oxygenation product formed by mouse Alox15. Previous experiments indicated that Leu353Phe exchange in recombinant mouse Alox15 humanized the catalytic properties of the enzyme. To investigate whether this functional humanization might also work in vivo and to characterize the functional consequences of mouse Alox15 humanization we generated Alox15 knock-in mice (Alox15-KI), in which the Alox15 gene was modified in such a way that the animals express the arachidonic acid 15-lipoxygenating Leu353Phe mutant instead of the arachidonic acid 12-lipoxygenating wildtype enzyme. These mice develop normally, they are fully fertile but display modified plasma oxylipidomes. In young individuals, the basic hematological parameters were not different when Alox15-KI mice and outbred wildtype controls were compared. However, when growing older male Alox15-KI mice develop signs of dysfunctional erythropoiesis such as reduced hematocrit, lower erythrocyte counts and attenuated hemoglobin concentration. These differences were paralleled by an improved ex vivo osmotic resistance of the peripheral red blood cells. Interestingly, such differences were not observed in female individuals suggesting gender specific effects. In summary, these data indicated that functional humanization of mouse Alox15 induces defective erythropoiesis in aged male individuals.


Subject(s)
Arachidonate 15-Lipoxygenase , Hydrogen Peroxide , Animals , Female , Humans , Male , Mice , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/genetics , Arachidonic Acid , Mammals
2.
Int J Mol Sci ; 24(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37446212

ABSTRACT

Mammalian arachidonic acid lipoxygenases (ALOXs) have been implicated in the pathogenesis of inflammatory diseases, and its pro- and anti-inflammatory effects have been reported for different ALOX-isoforms. Human ALOX15B oxygenates arachidonic acid to its 15-hydroperoxy derivative, whereas the corresponding 8-hydroperoxide is formed by mouse Alox15b (Alox8). This functional difference impacts the biosynthetic capacity of the two enzymes for creating pro- and anti-inflammatory eicosanoids. To explore the functional consequences of the humanization of the reaction specificity of mouse Alox15b in vivo, we tested Alox15b knock-in mice that express the arachidonic acid 15-lipoxygenating Tyr603Asp and His604Val double mutant of Alox15b, instead of the arachidonic acid 8-lipoxygenating wildtype enzyme, in two different animal inflammation models. In the dextran sodium sulfate-induced colitis model, female Alox15b-KI mice lost significantly more bodyweight during the acute phase of inflammation and recovered less rapidly during the resolution phase. Although we observed significant differences in the colonic levels of selected pro- and anti-inflammatory eicosanoids during the time-course of inflammation, there were no differences between the two genotypes at any time-point of the disease. In Freund's complete adjuvant-induced paw edema model, Alox15b-KI mice were less susceptible than outbred wildtype controls, though we did not observe significant differences in pain perception (Hargreaves-test, von Frey-test) when the two genotypes were compared. our data indicate that humanization of the reaction specificity of mouse Alox15b (Alox8) sensitizes mice for dextran sodium sulfate-induced experimental colitis, but partly protects the animals in the complete Freund's adjuvant-induced paw edema model.


Subject(s)
Colitis , Dextrans , Humans , Mice , Female , Animals , Arachidonic Acid , Inflammation/genetics , Mammals , Anti-Inflammatory Agents , Edema/chemically induced , Edema/genetics , Disease Models, Animal
3.
Curr Protoc ; 3(1): e635, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36598341

ABSTRACT

Double-control quantitative copy number PCR (dc-qcnPCR) is a recently described tool that can be used to quantify donor DNA insertions in genetically modified monoclonal cell lines. In conjunction with an insert-confirmation PCR, the technique can quickly and easily identify clones containing on-target heterozygous or homozygous donor DNA integrations and exclude off-target insertions. The genetic manipulation of immortal cell lines is a versatile tool to elucidate cellular signaling pathways and protein functions. Despite recent advances in the precision of genetic engineering tools such as CRISPR/Cas9, transcription-activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs), it is still essential to verify the accurate insertion of the sequence of interest (donor DNA) into the targeted genomic DNA (gDNA) locus. This precise integration into a genetic safe harbor, and exclusion of the donor DNA from functionally relevant genes, can ensure normal cellular functionality. Current methods to analyze the specificity of donor DNA insertions either are cost-prohibitive or create dependency on manufacturers for assay design and production. The dc-qcnPCR method is a simple, yet powerful, approach that can be prepared and carried out in any laboratory equipped with standard molecular biology supplies. Here we provide step-by-step instructions to prepare and perform the dc-qcnPCR, and its companion insert-confirmation PCR, to determine donor DNA insertion numbers in monoclonal cell lines genetically modified through CRISPR/Cas9. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Genetic modification at AAVS1 safe harbor in induced pluripotent stem cells (IMR90-4) using CRISPR/Cas9: from plasmid design to monoclonal expansion Support Protocol 1: Measurement of Gaussia luciferase activity to verify reporter protein functionality Support Protocol 2: Verification of monoclonal expansion using immunofluorescence. Basic Protocol 2: Insert-confirmation PCR Basic Protocol 3: Design and preparation of double-control quantitative copy number PCR reagents and quantification of donor DNA integrations in genetically modified monoclonal cells.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Induced Pluripotent Stem Cells/metabolism , CRISPR-Cas Systems/genetics , DNA Copy Number Variations , Animals, Genetically Modified , Polymerase Chain Reaction
4.
Inflammation ; 46(3): 893-911, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36598592

ABSTRACT

Inflammation is a hallmark in severe diseases such as atherosclerosis and non-alcohol-induced steatohepatitis (NASH). In the development of inflammation, prostaglandins, especially prostaglandin E2 (PGE2), are major players alongside with chemo- and cytokines, like tumor-necrosis-factor alpha (TNFα) and interleukin-1 beta (IL-1ß). During inflammation, PGE2 synthesis can be increased by the transcriptional induction of the two key enzymes: cyclooxygenase 2 (COX-2), which converts arachidonic acid to PGH2, and microsomal prostaglandin E2 synthase 1 (mPGES-1), which synthesizes PGE2 from PGH2. Both COX-2 and mPGES-2 were induced by a dietary intervention where mice were fed a fatty acid-rich and, more importantly, cholesterol-rich diet, leading to the development of NASH. Since macrophages are the main source of PGE2 synthesis and cholesterol is predominantly transported as LDL, the regulation of COX-2 and mPGES-1 expression by native LDL was analyzed in human macrophage cell lines. THP-1 and U937 monocytes were differentiated into macrophages, through which TNFα and PGE-2 induced COX-2 and mPGES-1 expression by LDL could be analyzed on both mRNA and protein levels. In addition, the interaction of LDL- and EP receptor signal chains in COX-2/mPGES-1 expression and PGE2-synthesis were analyzed in more detail using EP receptor specific agonists. Furthermore, the LDL-mediated signal transduction in THP-1 macrophages was analyzed by measuring ERK and Akt phosphorylation as well as transcriptional regulation of transcription factor Egr-1. COX-2 and mPGES-1 were induced in both THP-1 and U937 macrophages by the combination of TNFα and PGE2. Surprisingly, LDL dose-dependently increased the expression of mPGES-1 but repressed the expression of COX-2 on mRNA and protein levels in both cell lines. The interaction of LDL and PGE2 signal chains in mPGES-1 induction as well as PGE2-synthesis could be mimicked by through simultaneous stimulation with EP2 and EP4 agonists. In THP-1 macrophages, LDL induced Akt-phosphorylation, which could be blocked by a PI3 kinase inhibitor. Alongside blocking Akt-phosphorylation, the PI3K inhibitor inhibited LDL-mediated mPGES-1 induction; however, it did not attenuate the repression of COX-2 expression. LDL repressed basal ERK phosphorylation and expression of downstream transcription factor Egr-1, which might lead to inhibition of COX-2 expression. These findings suggest that simultaneous stimulation with a combination of TNFα, PGE2, and native LDL-activated signal chains in macrophage cell lines leads to maximal mPGES-1 activity, as well repression of COX-2 expression, by activating PI3K as well as repression of ERK/Egr-1 signal chains.


Subject(s)
Dinoprostone , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Cyclooxygenase 2/metabolism , Tumor Necrosis Factor-alpha/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Macrophages/metabolism , Cell Line , Prostaglandin-E Synthases/genetics , Prostaglandin-E Synthases/metabolism , Cyclooxygenase 1/metabolism , Prostaglandin H2/metabolism , Transcription Factors/metabolism , RNA, Messenger/metabolism
5.
J Clin Med ; 11(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35955975

ABSTRACT

Metabolic derangement with poor glycemic control accompanying overweight and obesity is associated with chronic low-grade inflammation and hyperinsulinemia. Macrophages, which present a very heterogeneous population of cells, play a key role in the maintenance of normal tissue homeostasis, but functional alterations in the resident macrophage pool as well as newly recruited monocyte-derived macrophages are important drivers in the development of low-grade inflammation. While metabolic dysfunction, insulin resistance and tissue damage may trigger or advance pro-inflammatory responses in macrophages, the inflammation itself contributes to the development of insulin resistance and the resulting hyperinsulinemia. Macrophages express insulin receptors whose downstream signaling networks share a number of knots with the signaling pathways of pattern recognition and cytokine receptors, which shape macrophage polarity. The shared knots allow insulin to enhance or attenuate both pro-inflammatory and anti-inflammatory macrophage responses. This supposedly physiological function may be impaired by hyperinsulinemia or insulin resistance in macrophages. This review discusses the mutual ambiguous relationship of low-grade inflammation, insulin resistance, hyperinsulinemia and the insulin-dependent modulation of macrophage activity with a focus on adipose tissue and liver.

6.
Methods Protoc ; 5(3)2022 May 25.
Article in English | MEDLINE | ID: mdl-35736544

ABSTRACT

In order to improve a recently established cell-based assay to assess the potency of botulinum neurotoxin, neuroblastoma-derived SiMa cells and induced pluripotent stem-cells (iPSC) were modified to incorporate the coding sequence of a reporter luciferase into a genetic safe harbor utilizing CRISPR/Cas9. A novel method, the double-control quantitative copy number PCR (dc-qcnPCR), was developed to detect off-target integrations of donor DNA. The donor DNA insertion success rate and targeted insertion success rate were analyzed in clones of each cell type. The dc-qcnPCR reliably quantified the copy number in both cell lines. The probability of incorrect donor DNA integration was significantly increased in SiMa cells in comparison to the iPSCs. This can possibly be explained by the lower bundled relative gene expression of a number of double-strand repair genes (BRCA1, DNA2, EXO1, MCPH1, MRE11, and RAD51) in SiMa clones than in iPSC clones. The dc-qcnPCR offers an efficient and cost-effective method to detect off-target CRISPR/Cas9-induced donor DNA integrations.

7.
Biomedicines ; 10(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35740398

ABSTRACT

Mammalian arachidonic acid lipoxygenases (ALOXs) have been implicated in cell differentiation and in the pathogenesis of inflammation. The mouse genome involves seven functional Alox genes and the encoded enzymes share a high degree of amino acid conservation with their human orthologs. There are, however, functional differences between mouse and human ALOX orthologs. Human ALOX15B oxygenates arachidonic acid exclusively to its 15-hydroperoxy derivative (15S-HpETE), whereas 8S-HpETE is dominantly formed by mouse Alox15b. The structural basis for this functional difference has been explored and in vitro mutagenesis humanized the reaction specificity of the mouse enzyme. To explore whether this mutagenesis strategy may also humanize the reaction specificity of mouse Alox15b in vivo, we created Alox15b knock-in mice expressing the arachidonic acid 15-lipoxygenating Tyr603Asp+His604Val double mutant instead of the 8-lipoxygenating wildtype enzyme. These mice are fertile, display slightly modified plasma oxylipidomes and develop normally up to an age of 24 weeks. At later developmental stages, male Alox15b-KI mice gain significantly less body weight than outbred wildtype controls, but this effect was not observed for female individuals. To explore the possible reasons for the observed gender-specific growth arrest, we determined the basic hematological parameters and found that aged male Alox15b-KI mice exhibited significantly attenuated red blood cell parameters (erythrocyte counts, hematocrit, hemoglobin). Here again, these differences were not observed in female individuals. These data suggest that humanization of the reaction specificity of mouse Alox15b impairs the functionality of the hematopoietic system in males, which is paralleled by a premature growth arrest.

8.
Front Cell Dev Biol ; 10: 871585, 2022.
Article in English | MEDLINE | ID: mdl-35531094

ABSTRACT

Arachidonic acid lipoxygenases (ALOXs) have been implicated in the immune response of mammals. The reaction specificity of these enzymes is decisive for their biological functions and ALOX classification is based on this enzyme property. Comparing the amino acid sequences and the functional properties of selected mammalian ALOX15 orthologs we previously hypothesized that the reaction specificity of these enzymes can be predicted based on their amino acid sequences (Triad Concept) and that mammals, which are ranked in evolution below gibbons, express arachidonic acid 12-lipoxygenating ALOX15 orthologs. In contrast, Hominidae involving the great apes and humans possess 15-lipoxygenating enzymes (Evolutionary Hypothesis). These two hypotheses were based on sequence data of some 60 mammalian ALOX15 orthologs and about half of them were functionally characterized. Here, we compared the ALOX15 sequences of 152 mammals representing all major mammalian subclades expressed 44 novel ALOX15 orthologs and performed extensive mutagenesis studies of their triad determinants. We found that ALOX15 genes are absent in extant Prototheria but that corresponding enzymes frequently occur in Metatheria and Eutheria. More than 90% of them catalyze arachidonic acid 12-lipoxygenation and the Triad Concept is applicable to all of them. Mammals ranked in evolution above gibbons express arachidonic acid 15-lipoxygenating ALOX15 orthologs but enzymes with similar specificity are only present in less than 5% of mammals ranked below gibbons. This data suggests that ALOX15 orthologs have been introduced during Prototheria-Metatheria transition and put the Triad Concept and the Evolutionary Hypothesis on a much broader and more reliable experimental basis.

9.
Nutr Diabetes ; 12(1): 20, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35418570

ABSTRACT

OBJECTIVE: Current data regarding the roles of branched-chain amino acids (BCAA) in metabolic health are rather conflicting, as positive and negative effects have been attributed to their intake. METHODS: To address this, individual effects of leucine and valine were elucidated in vivo (C57BL/6JRj mice) with a detailed phenotyping of these supplementations in high-fat (HF) diets and further characterization with in vitro approaches (C2C12 myocytes). RESULTS: Here, we demonstrate that under HF conditions, leucine mediates beneficial effects on adiposity and insulin sensitivity, in part due to increasing energy expenditure-likely contributing partially to the beneficial effects of a higher milk protein intake. On the other hand, valine feeding leads to a worsening of HF-induced health impairments, specifically reducing glucose tolerance/insulin sensitivity. These negative effects are driven by an accumulation of the valine-derived metabolite 3-hydroxyisobutyrate (3-HIB). Higher plasma 3-HIB levels increase basal skeletal muscle glucose uptake which drives glucotoxicity and impairs myocyte insulin signaling. CONCLUSION: These data demonstrate the detrimental role of valine in an HF context and elucidate additional targetable pathways in the etiology of BCAA-induced obesity and insulin resistance.


Subject(s)
Amino Acids, Branched-Chain , Insulin Resistance , Animals , Glucose/metabolism , Insulin Resistance/physiology , Leucine/metabolism , Leucine/pharmacology , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Obesity/metabolism , Valine/metabolism , Valine/pharmacology
10.
Toxins (Basel) ; 14(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-35051041

ABSTRACT

Botulinum neurotoxin (BoNT) is used for the treatment of a number of ailments. The activity of the toxin that is isolated from bacterial cultures is frequently tested in the mouse lethality assay. Apart from the ethical concerns inherent to this assay, species-specific differences in the affinity for different BoNT serotypes give rise to activity results that differ from the activity in humans. Thus, BoNT/B is more active in mice than in humans. The current study shows that the stimulus-dependent release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-Gluc) was inhibited by clostridial and recombinant BoNT/A to the same extent, whereas both clostridial and recombinant BoNT/B inhibited the release to a lesser extent and only at much higher concentrations, reflecting the low activity of BoNT/B in humans. By contrast, the genetically modified BoNT/B-MY, which has increased affinity for human synaptotagmin, and the BoNT/B protein receptor inhibited luciferase release effectively and with an EC50 comparable to recombinant BoNT/A. This was due to an enhanced uptake into the reporter cells of BoNT/B-MY in comparison to the recombinant wild-type toxin. Thus, the SIMA-hPOMC1-26-Gluc cell assay is a versatile tool to determine the activity of different BoNT serotypes providing human-relevant dose-response data.


Subject(s)
Bacterial Toxins/toxicity , Botulinum Toxins, Type A/toxicity , Mutation , Bacterial Toxins/genetics , Bacterial Toxins/pharmacology , Biological Assay , Botulinum Toxins, Type A/genetics , Botulinum Toxins, Type A/pharmacology , Cell Line , Humans , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/toxicity
11.
Toxins (Basel) ; 13(4)2021 03 30.
Article in English | MEDLINE | ID: mdl-33808507

ABSTRACT

The suitability of a newly developed cell-based functional assay was tested for the detection of the activity of a range of neurotoxins and neuroactive pharmaceuticals which act by stimulation or inhibition of calcium-dependent neurotransmitter release. In this functional assay, a reporter enzyme is released concomitantly with the neurotransmitter from neurosecretory vesicles. The current study showed that the release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-GLuc cells) can be stimulated by a carbachol-mediated activation of the Gq-coupled muscarinic-acetylcholine receptor and by the Ca2+-channel forming spider toxin α-latrotoxin. Carbachol-stimulated luciferase release was completely inhibited by the muscarinic acetylcholine receptor antagonist atropine and α-latrotoxin-mediated release by the Ca2+-chelator EGTA, demonstrating the specificity of luciferase-release stimulation. SIMA-hPOMC1-26-GLuc cells express mainly L- and N-type and to a lesser extent T-type VGCC on the mRNA and protein level. In accordance with the expression profile a depolarization-stimulated luciferase release by a high K+-buffer was effectively and dose-dependently inhibited by L-type VGCC inhibitors and to a lesser extent by N-type and T-type inhibitors. P/Q- and R-type inhibitors did not affect the K+-stimulated luciferase release. In summary, the newly established cell-based assay may represent a versatile tool to analyze the biological efficiency of a range of neurotoxins and neuroactive pharmaceuticals which mediate their activity by the modulation of calcium-dependent neurotransmitter release.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels/drug effects , Calcium/metabolism , Genes, Reporter , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Neuroblastoma/metabolism , Neurotoxins/pharmacology , Secretory Vesicles/drug effects , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium Signaling/drug effects , Cell Line, Tumor , Humans , Luciferases/genetics , Luciferases/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Secretory Vesicles/genetics , Secretory Vesicles/metabolism , Spider Venoms/pharmacology
12.
Biomedicines ; 9(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919366

ABSTRACT

Macrophages in pathologically expanded dysfunctional white adipose tissue are exposed to a mix of potential modulators of inflammatory response, including fatty acids released from insulin-resistant adipocytes, increased levels of insulin produced to compensate insulin resistance, and prostaglandin E2 (PGE2) released from activated macrophages. The current study addressed the question of how palmitate might interact with insulin or PGE2 to induce the formation of the chemotactic pro-inflammatory cytokine interleukin-8 (IL-8). Human THP-1 cells were differentiated into macrophages. In these macrophages, palmitate induced IL-8 formation. Insulin enhanced the induction of IL-8 formation by palmitate as well as the palmitate-dependent stimulation of PGE2 synthesis. PGE2 in turn elicited IL-8 formation on its own and enhanced the induction of IL-8 release by palmitate, most likely by activating the EP4 receptor. Since IL-8 causes insulin resistance and fosters inflammation, the increase in palmitate-induced IL-8 formation that is caused by hyperinsulinemia and locally produced PGE2 in chronically inflamed adipose tissue might favor disease progression in a vicious feed-forward cycle.

13.
Sci Rep ; 10(1): 13700, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32792676

ABSTRACT

Most in vitro test systems for the assessment of toxicity are based on endpoint measurements and cannot contribute much to the establishment of mechanistic models, which are crucially important for further progress in this field. Hence, in recent years, much effort has been put into the development of methods that generate kinetic data. Real time measurements of the metabolic activity of cells based on the use of oxygen sensitive microsensor beads have been shown to provide access to the mode of action of compounds in hepatocytes. However, for fully exploiting this approach a detailed knowledge of the microenvironment of the cells is required. In this work, we investigate the cellular behaviour of three types of hepatocytes, HepG2 cells, HepG2-3A4 cells and primary mouse hepatocytes, towards their exposure to acetaminophen when the availability of oxygen for the cell is systematically varied. We show that the relative emergence of two modes of action, one NAPQI dependent and the other one transient and NAPQI independent, scale with expression level of CYP3A4. The transient cellular response associated to mitochondrial respiration is used to characterise the influence of the initial oxygen concentration in the wells before exposure to acetaminophen on the cell behaviour. A simple model is presented to describe the behaviour of the cells in this scenario. It demonstrates the level of control over the role of oxygen supply in these experiments. This is crucial for establishing this approach into a reliable and powerful method for the assessment of toxicity.


Subject(s)
Bioreactors , Biosensing Techniques/methods , Cellular Microenvironment , Hepatocytes/metabolism , Oxygen Consumption/drug effects , Oxygen/metabolism , Acetaminophen/pharmacology , Animals , Biomarkers/analysis , Cytochrome P-450 CYP3A/metabolism , Hep G2 Cells , Hepatocytes/cytology , Hepatocytes/drug effects , Humans , Mice , Mice, Inbred C57BL
14.
Cytokine ; 136: 155241, 2020 12.
Article in English | MEDLINE | ID: mdl-32799102

ABSTRACT

Overweight and obesity are accompanied by insulin resistance, impaired intestinal barrier function resulting in increased lipopolysaccharide (LPS) levels, and a low-grade chronic inflammation that results in macrophage activation. Macrophages produce a range of interleukins as well as prostaglandin E2 (PGE2). To cope with insulin resistance, hyperinsulinemia develops. The purpose of the study was to elucidate how LPS, insulin and PGE2 might interact to modulate the inflammatory response in macrophages. Human macrophages were either derived by differentiation from U937 cells or isolated from blood mononuclear cells. The macrophages were stimulated with LPS, insulin and PGE2. Insulin significantly enhanced the LPS-dependent expression of interleukin-1ß and interleukin-8 on both the mRNA and protein levels. Additionally, insulin increased the LPS-dependent induction of enzymes involved in the PGE2-synthesis and the production of PGE2 by macrophages. PGE2 in turn further enhanced the LPS-dependent expression of cytokines via its Gs-coupled receptors EP2 and EP4, the latter of which appeared to be more relevant. The combination of all three stimuli resulted in an even higher induction than the combination of LPS plus insulin or LPS plus PGE2. Thus, the compensatory hyperinsulinemia might directly and indirectly enhance the LPS-dependent cytokine production in obese individuals.


Subject(s)
Dinoprostone/biosynthesis , Insulin/pharmacology , Interleukin-1beta/biosynthesis , Interleukin-8/biosynthesis , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Humans , U937 Cells
15.
Toxins (Basel) ; 12(5)2020 04 25.
Article in English | MEDLINE | ID: mdl-32344847

ABSTRACT

Botulinum neurotoxins (BoNTs) are potent neurotoxins produced by bacteria, which inhibit neurotransmitter release, specifically in their physiological target known as motor neurons (MNs). For the potency assessment of BoNTs produced for treatment in traditional and aesthetic medicine, the mouse lethality assay is still used by the majority of manufacturers, which is ethically questionable in terms of the 3Rs principle. In this study, MNs were differentiated from human induced pluripotent stem cells based on three published protocols. The resulting cell populations were analyzed for their MN yield and their suitability for the potency assessment of BoNTs. MNs produce specific gangliosides and synaptic proteins, which are bound by BoNTs in order to be taken up by receptor-mediated endocytosis, which is followed by cleavage of specific soluble N-ethylmaleimide-sensitive-factor attachment receptor (SNARE) proteins required for neurotransmitter release. The presence of receptors and substrates for all BoNT serotypes was demonstrated in MNs generated in vitro. In particular, the MN differentiation protocol based on Du et al. yielded high numbers of MNs in a short amount of time with high expression of BoNT receptors and targets. The resulting cells are more sensitive to BoNT/A1 than the commonly used neuroblastoma cell line SiMa. MNs are, therefore, an ideal tool for being combined with already established detection methods.


Subject(s)
Acetylcholine Release Inhibitors/pharmacology , Botulinum Toxins/pharmacology , Induced Pluripotent Stem Cells/drug effects , Motor Neurons/drug effects , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Neurotoxins/pharmacology , Acetylcholine Release Inhibitors/toxicity , Animal Testing Alternatives , Biological Assay , Botulinum Toxins/toxicity , Cell Line , Dose-Response Relationship, Drug , Humans , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Neural Stem Cells/metabolism , Neurotoxins/toxicity
16.
Nutrients ; 11(11)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717358

ABSTRACT

Non-alcoholic fatty liver diseases (NAFLD) including the severe form with steatohepatitis (NASH) are highly prevalent ailments to which no approved pharmacological treatment exists. Dietary intervention aiming at 10% weight reduction is efficient but fails due to low compliance. Increase in physical activity is an alternative that improved NAFLD even in the absence of weight reduction. The underlying mechanisms are unclear and cannot be studied in humans. Here, a rat NAFLD model was developed that reproduces many facets of the diet-induced NAFLD in humans. The impact of endurance exercise was studied in this model. Male Wistar rats received control chow or a NASH-inducing diet rich in fat, cholesterol, and fructose. Both diet groups were subdivided into a sedentary and an endurance exercise group. Animals receiving the NASH-inducing diet gained more body weight, got glucose intolerant and developed a liver pathology with steatosis, hepatocyte hypertrophy, inflammation and fibrosis typical of NAFLD or NASH. Contrary to expectations, endurance exercise did not improve the NASH activity score and even enhanced hepatic inflammation. However, endurance exercise attenuated the hepatic cholesterol overload and the ensuing severe oxidative stress. In addition, exercise improved glucose tolerance possibly in part by induction of hepatic FGF21 production.


Subject(s)
Exercise Therapy , Fibroblast Growth Factors/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Oxidative Stress , Physical Conditioning, Animal , Physical Endurance , Animals , Blood Glucose/metabolism , Diet, High-Fat , Dietary Sugars , Disease Models, Animal , Down-Regulation , Exercise Therapy/adverse effects , Fructose , Liver/pathology , Male , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Physical Conditioning, Animal/adverse effects , Rats, Wistar , Signal Transduction
17.
Sci Rep ; 8(1): 16127, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30382148

ABSTRACT

In a subset of patients, non-alcoholic fatty liver disease (NAFLD) is complicated by cell death and inflammation resulting in non-alcoholic steatohepatitis (NASH), which may progress to fibrosis and subsequent organ failure. Apart from cytokines, prostaglandins, in particular prostaglandin E2 (PGE2), play a pivotal role during inflammatory processes. Expression of the key enzymes of PGE2 synthesis, cyclooxygenase 2 and microsomal PGE synthase 1 (mPGES-1), was increased in human NASH livers in comparison to controls and correlated with the NASH activity score. Both enzymes were also induced in NASH-diet-fed wild-type mice, resulting in an increase in hepatic PGE2 concentration that was completely abrogated in mPGES-1-deficient mice. PGE2 is known to inhibit TNF-α synthesis in macrophages. A strong infiltration of monocyte-derived macrophages was observed in NASH-diet-fed mice, which was accompanied with an increase in hepatic TNF-α expression. Due to the impaired PGE2 production, TNF-α expression increased much more in livers of mPGES-1-deficient mice or in the peritoneal macrophages of these mice. The increased levels of TNF-α resulted in an enhanced IL-1ß production, primarily in hepatocytes, and augmented hepatocyte apoptosis. In conclusion, attenuation of PGE2 production by mPGES-1 ablation enhanced the TNF-α-triggered inflammatory response and hepatocyte apoptosis in diet-induced NASH.


Subject(s)
Inflammation/pathology , Liver/pathology , Microsomes/enzymology , Non-alcoholic Fatty Liver Disease/enzymology , Non-alcoholic Fatty Liver Disease/pathology , Prostaglandin-E Synthases/metabolism , Animals , Apoptosis , Dinoprostone/biosynthesis , Disease Models, Animal , Feedback, Physiological , Hepatocytes/metabolism , Humans , Interleukin-1beta/metabolism , Macrophages, Peritoneal/metabolism , Mice, Inbred C57BL , Models, Biological , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
18.
Nutrients ; 10(9)2018 Sep 18.
Article in English | MEDLINE | ID: mdl-30231595

ABSTRACT

While the impact of dietary cholesterol on the progression of atherosclerosis has probably been overestimated, increasing evidence suggests that dietary cholesterol might favor the transition from blunt steatosis to non-alcoholic steatohepatitis (NASH), especially in combination with high fat diets. It is poorly understood how cholesterol alone or in combination with other dietary lipid components contributes to the development of lipotoxicity. The current study demonstrated that liver damage caused by dietary cholesterol in mice was strongly enhanced by a high fat diet containing soybean oil-derived ω6-poly-unsaturated fatty acids (ω6-PUFA), but not by a lard-based high fat diet containing mainly saturated fatty acids. In contrast to the lard-based diet the soybean oil-based diet augmented cholesterol accumulation in hepatocytes, presumably by impairing cholesterol-eliminating pathways. The soybean oil-based diet enhanced cholesterol-induced mitochondrial damage and amplified the ensuing oxidative stress, probably by peroxidation of poly-unsaturated fatty acids. This resulted in hepatocyte death, recruitment of inflammatory cells, and fibrosis, and caused a transition from steatosis to NASH, doubling the NASH activity score. Thus, the recommendation to reduce cholesterol intake, in particular in diets rich in ω6-PUFA, although not necessary to reduce the risk of atherosclerosis, might be sensible for patients suffering from non-alcoholic fatty liver disease.


Subject(s)
Cholesterol, Dietary , Fatty Acids, Omega-6/toxicity , Liver/drug effects , Non-alcoholic Fatty Liver Disease/chemically induced , Soybean Oil/toxicity , Animals , Cell Death/drug effects , Disease Models, Animal , Lipid Peroxidation/drug effects , Liver/metabolism , Liver/pathology , Male , Mice, Inbred C57BL , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Stress/drug effects
19.
Toxins (Basel) ; 10(9)2018 09 05.
Article in English | MEDLINE | ID: mdl-30189643

ABSTRACT

Despite the implementation of cell-based replacement methods, the mouse lethality assay is still frequently used to determine the activity of botulinum toxin (BoNT) for medical use. One explanation is that due to the use of neoepitope-specific antibodies to detect the cleaved BoNT substrate, the currently devised assays can detect only one specific serotype of the toxin. Recently, we developed a cell-based functional assay, in which BoNT activity is determined by inhibiting the release of a reporter enzyme that is liberated concomitantly with the neurotransmitter from neurosecretory vesicles. In theory, this assay should be suitable to detect the activity of any BoNT serotype. Consistent with this assumption, the current study shows that the stimulus-dependent release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-GLuc cells) was inhibited by BoNT-A and-C. Furthermore, this was also inhibited by BoNT-B and tetanus toxin to a lesser extent and at higher concentrations. In order to provide support for the suitability of this technique in practical applications, a dose⁻response curve obtained with a pharmaceutical preparation of BoNT-A closely mirrored the activity determined in the mouse lethality assay. In summary, the newly established cell-based assay may represent a versatile and specific alternative to the mouse lethality assay and other currently established cell-based assays.


Subject(s)
Biological Assay , Botulinum Toxins/toxicity , Luciferases/genetics , Neurotoxins/toxicity , Tetanus Toxin/toxicity , Cell Line, Tumor , Genes, Reporter , Humans , Oligonucleotides/genetics , Proteolysis
20.
Toxicol Sci ; 163(1): 170-181, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29420809

ABSTRACT

Analyzing mixture toxicity requires an in-depth understanding of the mechanisms of action of its individual components. Substances with the same target organ, same toxic effect and same mode of action (MoA) are believed to cause additive effects, whereas substances with different MoAs are assumed to act independently. Here, we tested 2 triazole fungicides, propiconazole, and tebuconazole (Te), for individual and combined effects on liver toxicity-related endpoints. Both triazoles are proposed to belong to the same cumulative assessment group and are therefore thought to display similar and additive behavior. Our data show that Te is an antagonist of the constitutive androstane receptor (CAR) in rats and humans, while propiconazole is an agonist of this receptor. Both substances activate the pregnane X-receptor (PXR) and further induce mRNA expression of CYP3A4. CYP3A4 enzyme activity, however, is inhibited by propiconazole. For common targets of PXR and CAR, the activation of PXR by Te overrides CAR inhibition. In summary, propiconazole and Te affect different hepatotoxicity-relevant cellular targets and, depending on the individual endpoint analyzed, act via similar or dissimilar mechanisms. The use of molecular data based on research in human cell systems extends the picture to refine cumulative assessment group grouping and substantially contributes to the understanding of mixture effects of chemicals in biological systems.


Subject(s)
Fungicides, Industrial/pharmacology , Hepatocytes/drug effects , Pregnane X Receptor/agonists , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Triazoles/pharmacology , Animals , Cell Culture Techniques , Cell Line, Tumor , Cell Survival/drug effects , Constitutive Androstane Receptor , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Drug Synergism , Hepatocytes/metabolism , Humans , Molecular Docking Simulation , Pregnane X Receptor/genetics , Rats , Receptors, Cytoplasmic and Nuclear/genetics , Substrate Specificity , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...