Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sustain Chem Eng ; 10(11): 3749-3756, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35360052

ABSTRACT

Upgradation of olefin-enriched Fischer-Tropsch cuts by the synthesis of alcohols leads to drop-in-capable biosynthetic fuels with low carbon emissions. As an alternative to the conventional two-step production of long-chain alcohols, tandem catalytic systems improve the energy and resource efficiency. Herein, we present an auto-tandem catalytic system for the production of alcohols from olefin-paraffin mixtures. By utilization of a tertiary alkanolamine as the ligand as well as the switchable component in the solvent system, a lean reaction system capable of catalyst recycling was developed. The system was characterized with regard to the switchable solvent separation approach and reaction parameters, resulting in alcohol yields of up to 99.5% and turnover frequencies of up to 764 h-1. By recycling the catalyst in 10 consecutive reactions, a total turnover number of 2810 was achieved.

2.
ChemSusChem ; 14(23): 5226-5234, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34145781

ABSTRACT

CO2 -neutral fuels are a way to cleaner and more sustainable mobility. Utilization of bio-syngas via Fischer-Tropsch (FT) synthesis represents an interesting route for the production of tailormade biofuels. Recent developments in FT catalyst research led to olefin-enriched products, enabling the synthesis of alcohol-enriched fuels by reductive hydroformylation of the C=C bond. Several alcohols have already proven to be suitable fuel additives with favorable combustion behavior. Here, a hydroformylation-hydrogenation sequence of FT-olefin-paraffin mixtures was investigated as a potential route to alcohols. A liquid-liquid biphasic system with a rhodium/3,3',3''-phosphanetriyltris(benzenesulfonic acid) trisodium salt (TPPTS) catalyst system was chosen for effective catalyst recycling. After optimizing reaction conditions with a model substrate consisting of 1-octene and n-heptane the conversion of an actual olefin-containing C5 -C10  FT product fraction to alcohols in continuously operated processes for 37 h was achieved with a total turnover number of 23679.

SELECTION OF CITATIONS
SEARCH DETAIL
...