Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 13(3)2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33800086

ABSTRACT

Taro (Colocasia esculenta) corm is traditionally consumed as a medicinal plant to stimulate immune responses and restore a health status. Tarin, a taro lectin, is considered responsible for the immunomodulatory effects of taro. In the present study, in order to investigate the effects of tarin on bone marrow hematopoietic population, murine cells were stimulated with tarin combined with a highly enriched conditioned medium containing either IL-3 or GM-CSF. Cells challenged with tarin proliferated in a dose-dependent manner, evidenced by the increase in cell density and number of clusters and colonies. Tarin exhibited a cytokine-mimetic effect similar to IL-3 and GM-CSF, increasing granulocytic cell lineage percentages, demonstrated by an increase in the relative percentage of Gr-1+ cells. Tarin does not increase lymphocytic lineages, but phenotyping revealed that the relative percentage of CD3+ cells was increased with a concomitant decrease in CD19+ and IL-7Rα+ cells. Most bone marrow cells were stained with tarin-FITC, indicating non-selective tarin binding, a phenomenon that must still be elucidated. In conclusion, taro corms contain an immunomodulatory lectin able to boost the immune system by promoting myeloid and lymphoid hematopoietic progenitor cell proliferation and differentiation.

2.
Cell Tissue Res ; 319(1): 91-102, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15517397

ABSTRACT

The coelome-associated lympho-myeloid tissues, including the omentum, are derived from early embryo haemopoietic tissue of the splanchnopleura, and produce B lymphocytes and macrophages. They are reactive in pathologies involving coelomic cavities, in which they can expand in situ the cells of inflammatory infiltrates. We have addressed the question of the role of the adult omentum in permanent basal production of early lymphopoietic progenitors (pro-B/pre-B cells), through characterisation of omentum cells ex vivo, and study of their in vitro differentiation. We have shown that the murine omentum produces early haemopoietic progenitors throughout life, including B-cell progenitors prior to the Ig gene recombination expressing RAG-1 and lambda5, as well as macrophages. Their production is stroma-dependent. The omentum stroma can supply in vitro the cytokines (SDF-1alpha, Flt3 ligand and IL-7) and the molecular environment required for generation of these two cell lineages. Omentum haemopoietic progenitors are similar to those observed in foetal blood cell production, rather than to progenitors found in the adult haemopoietic tissue in the bone marrow--in terms of phenotype expression and differentiation capacity. We conclude that a primitive pattern of haemopoiesis observed in the early embryo is permanently preserved and functional in the adult omentum, providing production of cells engaged in nonspecific protection of abdominal intestinal tissue and of the coelomic cavity.


Subject(s)
B-Lymphocytes/cytology , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Monocytes/cytology , Omentum/cytology , Animals , B-Lymphocytes/immunology , Cell Differentiation , Cells, Cultured , Cytokines/biosynthesis , Flow Cytometry , Hematopoietic Stem Cells/immunology , Lymphopoiesis/physiology , Mice , Mice, Inbred C3H , Monocytes/immunology , Omentum/immunology , Stromal Cells/cytology , Stromal Cells/immunology
3.
Cell Tissue Res ; 308(1): 87-96, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12012208

ABSTRACT

Coelomic cavities are relatively isolated from the systemic circulation of blood cells. Resident cell populations have a proper phenotype and kinetics, maintaining their steady-state populations and their responsiveness to local inflammatory reactions, in which the number and quality of coelomic cells can be greatly increased and modified. We have addressed the question of whether the increase in cell infiltrate in the inflamed abdominal cavity is sustained by the proliferation of myeloid cells in the omentum, and if so what are the characteristics of the progenitor cells involved and how the omentum controls their proliferation and differentiation. In the omentum under normal conditions and with inflammation due to schistosomal infection we found that pluripotent early myeloid progenitors were capable of giving rise to all the myeloid lineages in clonogenic assays, but not to the totipotent blood stem cells. Besides the major haemopoietins (GM-CSF, M-CSF, G-CSF, IL-5), the omentum stroma constitutively expressed SDF-1 alpha, the chemokine which elicits homing of circulating early haemopoietic progenitors. While normal omentum stroma produced LIF, its expression was substituted by SCF in inflamed tissues. In the first situation a slow steady-state renewal of progenitors is potentially favoured, while their intense expansion may be predominant in the latter one. We propose that the increase in cells in the abdominal cavity in inflammatory reactions is due to the enhanced input and expansion of early myeloid progenitors sustaining the in situ production of abdominal cell populations, rather than to the input of systemic circulating inflammatory cells.


Subject(s)
Abdomen , Leukopoiesis , Omentum/physiology , Omentum/physiopathology , Animals , Cell Differentiation , Cells, Cultured , Erythroid Precursor Cells/immunology , Inflammation/pathology , Inflammation/physiopathology , Mice , Mice, Inbred C3H , Myeloid Cells/metabolism , Omentum/anatomy & histology , Omentum/pathology , Schistosomiasis mansoni/pathology , Schistosomiasis mansoni/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...