Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 131: 104984, 2019 10.
Article in English | MEDLINE | ID: mdl-31301585

ABSTRACT

BACKGROUND: Few studies have investigated the 24-hour respiratory health effects of personal black carbon (BC) and ultrafine particles (UFP) exposure in schoolchildren. The objective of this study was to investigate these associations with the lung function in children 10-years old with and without persistent respiratory symptoms. METHODS: We conducted a cross-sectional study in 305 children (147 and 158 with and without persistent respiratory symptoms, respectively) from three European birth-cohorts: PARIS (France) and INMA Sabadell and Valencia (Spain). Personal 24-hour measurements of exposure concentrations to BC and UFP were performed by portable devices, before lung function testing. Forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and the fraction of exhaled nitric oxide (FeNO) were determined. RESULTS: There was no association of UFP with lung function parameters or FeNO whereas the increase in 24-hour BC exposure concentrations was related to a statistically significant decrease in lung function parameters only among children with persistent respiratory symptoms [-96.8 mL (95% Confidence Interval CI: -184.4 to -9.1 mL) in FVC, and -107.2 mL (95% CI: -177.5 to -36.9 mL) in FEV1 for an inter-quartile range of 1160 ng/m3 exposure increase]. A significant positive association between BC and FeNO was observed only in children with persistent respiratory symptoms with current wheezing and/or medication to improve breathing [FeNO increases with +6.9 ppb (95% CI: 0.7 to 13.1 ppb) with an inter-quartile range BC exposure increase]. CONCLUSION: Children suffering from persistent respiratory symptoms appear to be more vulnerable to BC exposure.


Subject(s)
Bronchitis/chemically induced , Lung/drug effects , Particulate Matter/toxicity , Soot/toxicity , Child , Child, Preschool , Cross-Sectional Studies , Female , Forced Expiratory Volume/drug effects , France , Humans , Infant , Infant, Newborn , Inflammation/chemically induced , Male , Nitric Oxide/analysis , Particulate Matter/analysis , Respiratory Function Tests , Soot/analysis , Spain , Vital Capacity/drug effects
2.
Environ Res ; 174: 95-104, 2019 07.
Article in English | MEDLINE | ID: mdl-31055170

ABSTRACT

The human exposome affects child development and health later in life, but its personal external levels, variability, and correlations are largely unknown. We characterized the personal external exposome of pregnant women and children in eight European cities. Panel studies included 167 pregnant women and 183 children (aged 6-11 years). A personal exposure monitoring kit composed of smartphone, accelerometer, ultraviolet (UV) dosimeter, and two air pollution monitors were used to monitor physical activity (PA), fine particulate matter (PM2.5), black carbon, traffic-related noise, UV-B radiation, and natural outdoor environments (NOE). 77% of women performed the adult recommendation of ≥150 min/week of moderate to vigorous PA (MVPA), while only 3% of children achieved the childhood recommendation of ≥60 min/day MVPA. 11% of women and 17% of children were exposed to daily PM2.5 levels higher than recommended (≥25µg/m3). Mean exposure to noise ranged from Lden 51.1 dB in Kaunas to Lden 65.2 dB in Barcelona. 4% of women and 23% of children exceeded the recommended maximum of 2 Standard-Erythemal-Dose of UV-B at least once a week. 33% of women and 43% of children never reached the minimum NOE contact recommendation of ≥30 min/week. The variations in air and noise pollution exposure were dominated by between-city variability, while most of the variation observed for NOE contact and PA was between-participants. The correlations between all personal exposures ranged from very low to low (Rho < 0.30). The levels of personal external exposures in both pregnant women and children are above the health recommendations, and there is little correlation between the different exposures. The assessment of the personal external exposome is feasible but sampling requires from one day to more than one year depending on exposure due to high variability between and within cities and participants.


Subject(s)
Air Pollutants , Air Pollution , Environmental Exposure/statistics & numerical data , Adult , Child , Cities , Environmental Monitoring , Europe , Exposome , Female , Humans , Particulate Matter , Pregnancy
3.
Environ Int ; 121(Pt 1): 561-573, 2018 12.
Article in English | MEDLINE | ID: mdl-30300814

ABSTRACT

BACKGROUND: Exposome studies are challenged by exposure misclassification for non-persistent chemicals, whose temporal variability contributes to bias in dose-response functions. OBJECTIVES: We evaluated the variability of urinary concentrations of 24 non-persistent chemicals: 10 phthalate metabolites, 7 phenols, 6 organophosphate (OP) pesticide metabolites, and cotinine, between weeks from different pregnancy trimesters in pregnant women, and between days and between seasons in children. METHODS: 154 pregnant women and 152 children from six European countries were enrolled in 2014-2015. Pregnant women provided three urine samples over a day (morning, midday, and night), for one week in the 2nd and 3rd pregnancy trimesters. Children provided two urines a day (morning and night), over two one-week periods, six months apart. We pooled all samples for a given subject that were collected within a week. In children, we also made four daily pools (combining morning and night voids) during the last four days of the first follow-up week. Pools were analyzed for all 24 metabolites of interest. We calculated intraclass-correlation coefficients (ICC) and estimated the number of pools needed to obtain an ICC above 0.80. RESULTS: All phthalate metabolites and phenols were detected in >90% of pools whereas certain OP pesticide metabolites and cotinine were detected in <43% of pools. We observed fair (ICC = 0.40-0.59) to good (0.60-0.74) between-day reliability of the pools of two samples in children for all chemicals. Reliability was poor (<0.40) to fair between trimesters in pregnant women and between seasons in children. For most chemicals, three daily pools of two urines each (for weekly exposure windows) and four weekly pools of 15-20 urines each would be necessary to obtain an ICC above 0.80. CONCLUSIONS: This quantification of the variability of biomarker measurements of many non-persistent chemicals during several time windows shows that for many of these compounds a few dozen samples are required to accurately assess exposure over periods encompassing several trimesters or months.


Subject(s)
Environmental Pollutants/urine , Adult , Biomarkers/urine , Child , Cotinine/urine , Europe , Female , Humans , Male , Organophosphorus Compounds/urine , Phenols/urine , Phthalic Acids/urine , Pregnancy , Pregnancy Trimester, Third , Reproducibility of Results , Seasons , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...