Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
J Imaging ; 9(8)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37623683

ABSTRACT

Knowledge of the relative performance of the well-known sparse and low-rank compressed sensing models with 3D radial quantitative magnetic resonance imaging acquisitions is limited. We use 3D radial T1 relaxation time mapping data to compare the total variation, low-rank, and Huber penalty function approaches to regularization to provide insights into the relative performance of these image reconstruction models. Simulation and ex vivo specimen data were used to determine the best compressed sensing model as measured by normalized root mean squared error and structural similarity index. The large-scale compressed sensing models were solved by combining a GPU implementation of a preconditioned primal-dual proximal splitting algorithm to provide high-quality T1 maps within a feasible computation time. The model combining spatial total variation and locally low-rank regularization yielded the best performance, followed closely by the model combining spatial and contrast dimension total variation. Computation times ranged from 2 to 113 min, with the low-rank approaches taking the most time. The differences between the compressed sensing models are not necessarily large, but the overall performance is heavily dependent on the imaged object.

3.
Carbohydr Polym ; 319: 121166, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37567690

ABSTRACT

The purpose of this study was to determine how to control and measure the hierarchical swelling in pulp fibers via electrostatic interactions and localized osmotic pressure. A eutectic solvent system was used to systematically increase phosphate groups in the cell wall. Increase in fiber charge led to an increase in swelling properties, as expected. At a charge value around 180-200 µmol/g the macrofibrils were found to deaggregate. This led to a large jump in mesoscale swelling, from 0.9 to 2.5 mL/g, and surface area, from 400 to 1000 m2/g. This deaggregation was confirmed with X-ray scattering and solute exclusion. A novel thermoporosimetry method was used in the study. This involved splitting the nonfreezing water into two subfractions, thus allowing a more complete analysis of pore structure and surface area. The hydrated surface area for the samples was in the range 1200-1400 m2/g, which agreed well with simulations of aggregated microfibrils. Adding charge to the pulp fibers had a nonlinear effect on handsheet strength properties. This suggests that hierarchical control of fiber swelling may be a useful approach to improve important property pairs such as strength/density in packaging and other commercially important fiber products.

4.
J Imaging ; 8(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35735956

ABSTRACT

Quantitative MRI (qMRI) methods allow reducing the subjectivity of clinical MRI by providing numerical values on which diagnostic assessment or predictions of tissue properties can be based. However, qMRI measurements typically take more time than anatomical imaging due to requiring multiple measurements with varying contrasts for, e.g., relaxation time mapping. To reduce the scanning time, undersampled data may be combined with compressed sensing (CS) reconstruction techniques. Typical CS reconstructions first reconstruct a complex-valued set of images corresponding to the varying contrasts, followed by a non-linear signal model fit to obtain the parameter maps. We propose a direct, embedded reconstruction method for T1ρ mapping. The proposed method capitalizes on a known signal model to directly reconstruct the desired parameter map using a non-linear optimization model. The proposed reconstruction method also allows directly regularizing the parameter map of interest and greatly reduces the number of unknowns in the reconstruction, which are key factors in the performance of the reconstruction method. We test the proposed model using simulated radially sampled data from a 2D phantom and 2D cartesian ex vivo measurements of a mouse kidney specimen. We compare the embedded reconstruction model to two CS reconstruction models and in the cartesian test case also the direct inverse fast Fourier transform. The T1ρ RMSE of the embedded reconstructions was reduced by 37-76% compared to the CS reconstructions when using undersampled simulated data with the reduction growing with larger acceleration factors. The proposed, embedded model outperformed the reference methods on the experimental test case as well, especially providing robustness with higher acceleration factors.

5.
Nano Lett ; 22(13): 5143-5150, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35767745

ABSTRACT

Understanding nanoscale moisture interactions is fundamental to most applications of wood, including cellulosic nanomaterials with tailored properties. By combining X-ray scattering experiments with molecular simulations and taking advantage of computed scattering, we studied the moisture-induced changes in cellulose microfibril bundles of softwood secondary cell walls. Our models reproduced the most important experimentally observed changes in diffraction peak locations and widths and gave new insights into their interpretation. We found that changes in the packing of microfibrils dominate at moisture contents above 10-15%, whereas deformations in cellulose crystallites take place closer to the dry state. Fibrillar aggregation is a significant source of drying-related changes in the interior of the microfibrils. Our results corroborate the fundamental role of nanoscale phenomena in the swelling behavior and properties of wood-based materials and promote their utilization in nanomaterials development. Simulation-assisted scattering analysis proved an efficient tool for advancing the nanoscale characterization of cellulosic materials.


Subject(s)
Microfibrils , Wood , Cell Wall , Cellulose
6.
Carbohydr Polym ; 251: 117064, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33142616

ABSTRACT

Molecular-scale interactions between water and cellulose microfibril bundles in plant cell walls are not fully understood, despite their crucial role for many applications of plant biomass. Recent advances in X-ray and neutron scattering analysis allow more accurate interpretation of experimental data from wood cell walls. At the same time, microfibril bundles including hemicelluloses and water can be modelled at atomistic resolution. Computing scattering patterns from atomistic models enables a new, complementary approach to decipher some of the most fundamental questions at this level of the hierarchical cell wall structure. This article introduces studies related to moisture behavior of wood with small/wide-angle X-ray/neutron scattering and atomistic simulations, recent attempts to combine these two approaches, and perspectives and open questions for future research using this powerful combination. Finally, we discuss the opportunities of the combined method in relation to applications of lignocellulosic materials.

7.
Macromolecules ; 51(13): 4865-4873, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-30258252

ABSTRACT

We carried out large-scale atomistic molecular dynamics simulations to study the growth of twin lamellar crystals of polyethylene initiated by small crystal seeds. By examining the size distribution of the stems-straight crystalline polymer segments-we show that the crystal edge has a parabolic profile. At the growth front, there is a layer of stems too short to be stable, and new stable stems are formed within this layer, leading to crystal growth. Away from the edge, the lengthening of the stems is limited by a lack of available slack length in the chains. This frustration can be relieved by mobile crystal defects that allow topological relaxation by traversing through the crystal. The results shed light on the process of polymer crystal growth and help explain initial thickness selection and lamellar thickening.

8.
ACS Appl Mater Interfaces ; 9(26): 21959-21970, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28598154

ABSTRACT

We describe herein a nanocellulose-alginate hydrogel suitable for 3D printing. The composition of the hydrogel was optimized based on material characterization methods and 3D printing experiments, and its behavior during the printing process was studied using computational fluid dynamics simulations. The hydrogel was biofunctionalized by the covalent coupling of an enhanced avidin protein to the cellulose nanofibrils. Ionic cross-linking of the hydrogel using calcium ions improved the performance of the material. The resulting hydrogel is suitable for 3D printing, its mechanical properties indicate good tissue compatibility, and the hydrogel absorbs water in moist conditions, suggesting potential in applications such as wound dressings. The biofunctionalization potential was shown by attaching a biotinylated fluorescent protein and a biotinylated fluorescent small molecule via avidin and monitoring the material using confocal microscopy. The 3D-printable bioactivated nanocellulose-alginate hydrogel offers a platform for the development of biomedical devices, wearable sensors, and drug-releasing materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...