Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav ; 11(6): e02174, 2021 06.
Article in English | MEDLINE | ID: mdl-33998178

ABSTRACT

INTRODUCTION: There has been a growing effort to characterize the time-varying functional connectivity of resting state (RS) fMRI brain networks (RSNs). Although voxel-wise connectivity studies have examined different sliding window lengths, nonsequential volume-wise approaches have been less common. METHODS: Inspired by earlier co-activation pattern (CAP) studies, we applied hierarchical clustering (HC) to classify the image volumes of the RS-fMRI data on 28 adolescents with autism spectrum disorder (ASD) and their 27 typically developing (TD) controls. We compared the distribution of the ASD and TD groups' volumes in CAPs as well as their voxel-wise means. For simplification purposes, we conducted a group independent component analysis to extract 14 major RSNs. The RSNs' average z-scores enabled us to meaningfully regroup the RSNs and estimate the percentage of voxels within each RSN for which there was a significant group difference. These results were jointly interpreted to find global group-specific patterns. RESULTS: We found similar brain state proportions in 58 CAPs (clustering interval from 2 to 30). However, in many CAPs, the voxel-wise means differed significantly within a matrix of 14 RSNs. The rest-activated default mode-positive and default mode-negative brain state properties vary considerably in both groups over time. This division was seen clearly when the volumes were partitioned into two CAPs and then further examined along the HC dendrogram of the diversifying brain CAPs. The ASD group network activations followed a more heterogeneous distribution and some networks maintained higher baselines; throughout the brain deactivation state, the ASD participants had reduced deactivation in 12/14 networks. During default mode-negative CAPs, the ASD group showed simultaneous visual network and either dorsal attention or default mode network overactivation. CONCLUSION: Nonsequential volume gathering into CAPs and the comparison of voxel-wise signal changes provide a complementary perspective to connectivity and an alternative to sliding window analysis.


Subject(s)
Autism Spectrum Disorder , Magnetic Resonance Imaging , Adolescent , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping , Cluster Analysis , Humans , Neural Pathways
2.
Eur J Paediatr Neurol ; 19(5): 561-71, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26026490

ABSTRACT

BACKGROUND AND AIMS: The changes in functional brain organization associated with paediatric epilepsy are largely unknown. Since children with epilepsy are at risk of developing learning difficulties even before or shortly after the onset of epilepsy, we assessed the functional organization of memory and language in paediatric patients with temporal lobe epilepsy (TLE) at an early stage in epilepsy. METHODS: Functional magnetic resonance imaging was used to measure the blood oxygenation level-dependent (BOLD) response to four cognitive tasks measuring reading, story listening, memory encoding and retrieval in a population-based group of children with TLE of unknown cause (n = 21) and of normal intelligence and a healthy age and gender-matched control group (n = 21). RESULTS: Significant BOLD response differences were found only in one of the four tasks. In the story listening task, significant differences were found in the right hemispheric temporal structures, thalamus and basal ganglia. Both activation and deactivation differed significantly between the groups, activation being increased and deactivation decreased in the TLE group. Furthermore, the patients with abnormal electroencephalograms (EEGs) showed significantly increased activation bilaterally in the temporal structures, basal ganglia and thalamus relative to those with normal EEGs. The patients with normal interictal EEGs had a significantly stronger deactivation than those with abnormal EEGs or the controls, the differences being located outside the temporal structures. CONCLUSIONS: Our results suggest that TLE entails a widespread disruption of brain networks. This needs to be taken into consideration when evaluating learning abilities in patients with TLE. The thalamus seems to play an active role in TLE. The changes in deactivation may reflect neuronal inhibition.


Subject(s)
Brain/physiopathology , Epilepsy, Temporal Lobe/physiopathology , Memory/physiology , Reading , Adolescent , Brain/pathology , Brain Mapping , Child , Electroencephalography , Epilepsy, Temporal Lobe/complications , Female , Humans , Language , Magnetic Resonance Imaging , Male
3.
Epilepsy Res ; 100(1-2): 168-78, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22418271

ABSTRACT

Functional resting-state connectivity has been shown to be altered in certain adult epilepsy populations, but few connectivity studies have been performed on pediatric epilepsy patients. Here functional connectivity was measured in pediatric, non-lesional temporal lobe epilepsy patients with normal intelligence and compared with that in age and gender-matched healthy controls using the independent component analysis method. We hypothesized that children with non-lesional temporal lobe epilepsy have disrupted functional connectivity within resting-state networks. Significant differences were demonstrated between the two groups, pointing to a decrease in connectivity. When the results were analyzed according to the interictal electroencephalogram findings, however, the connectivity disruptions were seen in different networks. In addition, increased connectivity and abnormally anti-correlated thalamic activity was detected only in the patients with abnormal electroencephalograms. In summary, connectivity disruptions are already to be seen at an early stage of epilepsy, and epileptiform activity seems to affect connectivity differently. The results indicate that interictal epileptiform activity may lead to reorganization of the resting-state brain networks, but further studies would be needed in order to understand the pathophysiology behind this phenomenon.


Subject(s)
Brain/physiopathology , Epilepsy, Temporal Lobe/physiopathology , Magnetic Resonance Imaging/methods , Nerve Net/physiopathology , Rest/physiology , Adolescent , Child , Epilepsy, Temporal Lobe/diagnosis , Female , Humans , Male
4.
J Autism Dev Disord ; 42(6): 1011-24, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21822763

ABSTRACT

FMRI was performed with the dynamic facial expressions fear and happiness. This was done to detect differences in valence processing between 25 subjects with autism spectrum disorders (ASDs) and 27 typically developing controls. Valence scaling was abnormal in ASDs. Positive valence induces lower deactivation and abnormally strong activity in ASD in multiple regions. Negative valence increased deactivation in visual areas in subjects with ASDs. The most marked differences between valences focus on fronto-insular and temporal regions. This supports the idea that subjects with ASDs may have difficulty in passive processing of the salience and mirroring of expressions. When the valence scaling of brain activity fails, in contrast to controls, these areas activate and/or deactivate inappropriately during facial stimuli presented dynamically.


Subject(s)
Brain/physiopathology , Child Development Disorders, Pervasive/physiopathology , Emotions/physiology , Facial Expression , Recognition, Psychology/physiology , Adolescent , Brain Mapping , Child , Child Development Disorders, Pervasive/psychology , Female , Humans , Magnetic Resonance Imaging , Male , Severity of Illness Index , Surveys and Questionnaires , Visual Perception/physiology
5.
Brain Res ; 1373: 221-9, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21146507

ABSTRACT

Recent findings on intracortical EEG measurements show that the synchrony of localized neuronal networks is altered in epileptogenesis, leading to generalized seizure activity via connector hubs in the neuronal networks. Regional homogeneity (ReHo) analysis of blood oxygen level-dependent (BOLD) signals has demonstrated localized signal synchrony and disease-related alterations in a number of instances. We wanted to find out whether the ReHo of resting-state activity can be used to detect regional signal synchrony alterations in children with non-lesional temporal lobe epilepsy (TLE). Twenty-one TLE patients were compared with age and gender-matched healthy controls. Significantly increased ReHo was discovered in the posterior cingulate gyrus and the right medial temporal lobe of the patients, and they also had significantly decreased ReHo in the cerebellum compared with the healthy controls. However, the alterations in ReHo differed between the patients with normal and abnormal interictal EEGs, the latter showing significantly increased ReHo in the right fusiform gyrus and significantly decreased ReHo in the right medial frontal gyrus relative to the controls, while those with normal EEGs had significantly increased ReHo in the right inferior temporal gyrus and the left posterior cingulate gyrus. We conclude that altered BOLD signal synchrony can be detected in the cerebral and cerebellar cortices of children with TLE even in the absence of interictal EEG abnormalities.


Subject(s)
Brain Mapping , Brain/physiopathology , Epilepsy, Temporal Lobe/pathology , Adolescent , Brain/blood supply , Brain/pathology , Case-Control Studies , Child , Electroencephalography/methods , Female , Functional Laterality , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Oxygen , Pediatrics
6.
Brain Imaging Behav ; 4(2): 164-76, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20502991

ABSTRACT

This paper assessed the neural systems involved in processing of dynamic facial expressions in adolescents. The processing of facial expressions changes as a function of age, and it is thus important to understand how healthy adolescent subjects process dynamic facial expressions prior to analyzing disease-related changes. We hypothesized that viewing of dynamic facial expressions with opposing valences (happy vs. fearful) induces differential activations and deactivations in the brain. 27 healthy adolescents (9 female, 18 male, mean age = 14.5 years; age range 11.6-17.3 years) were examined by using the ASSQ and K-SADS-PL and scanned with 1.5-T fMRI during viewing of dynamic facial expressions and mosaic control images. The stimuli activated the same areas as previously seen in dynamic facial expression in adults. Our results indicated that opposing-valence dynamic facial expressions had differential effects on many cortical structures but not on subcortical limbic structures. The mirror neuron system is activated more during viewing of fearful compared to happy expressions in bilateral inferior frontal gyrus (IFG) and superior temporal sulcus (STS) left dominantly. We also detected more deactivation in the ventral anterior cingulate gyrus (ACG), showing more automated attentional processing of fearful expressions during passive viewing. Females were found to deactivate the right frontal pole more than male adolescents during happy facial expressions, while there were no differences in fear processing between genders. No clear gender or age effects were detected. In conclusion fear induces stronger responses in attention and mirror neurons probably related to fear contagion.


Subject(s)
Brain/physiology , Facial Expression , Fear , Happiness , Social Perception , Visual Perception/physiology , Adolescent , Aging , Brain/growth & development , Brain Mapping , Child , Emotions , Face , Female , Humans , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Photic Stimulation , Sex Characteristics
7.
Brain Res ; 1321: 169-79, 2010 Mar 19.
Article in English | MEDLINE | ID: mdl-20053346

ABSTRACT

Measures assessing resting-state brain activity with blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) can reveal cognitive disorders at an early stage. Analysis of regional homogeneity (ReHo) measures the local synchronization of spontaneous fMRI signals and has been successfully utilized in detecting alterations in subjects with attention-deficit hyperactivity disorder (ADHD), depression, schizophrenia, Parkinson's disease and Alzheimer's dementia. Resting-state brain activity was investigated in 28 adolescents with autism spectrum disorders (ASD) and 27 typically developing controls being imaged with BOLD fMRI and analyzed with the ReHo method. The hypothesis was that ReHo of resting-state brain activity would be different between ASD subjects and controls in brain areas previously shown to display functional alterations in stimulus or task based fMRI studies. Compared with the controls, the subjects with ASD had significantly decreased ReHo in right superior temporal sulcus region, right inferior and middle frontal gyri, bilateral cerebellar crus I, right insula and right postcentral gyrus. Significantly increased ReHo was discovered in right thalamus, left inferior frontal and anterior subcallosal gyrus and bilateral cerebellar lobule VIII. We conclude that subjects with ASD have right dominant ReHo alterations of resting-state brain activity, i.e., areas known to exhibit abnormal stimulus or task related functionality. Our results demonstrate that there is potential in utilizing the ReHo method in fMRI analyses of ASD.


Subject(s)
Brain Mapping/methods , Brain/physiopathology , Child Development Disorders, Pervasive/physiopathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging , Adolescent , Child , Female , Humans , Male , Rest
SELECTION OF CITATIONS
SEARCH DETAIL
...