Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Appl Physiol ; 97(6): 706-15, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16786354

ABSTRACT

Changes in the quadriceps femoris muscle with respect to anatomical cross sectional area (CSA), neural activation level and muscle strength were determined in 18 healthy men subjected to 8 weeks of horizontal bed rest (BR) with (n = 9) and without (n = 9) resistive vibration exercise (RVE). CSA of the knee extensor muscle group was measured with magnetic resonance imaging every 2 weeks during bed rest. In the control subjects (Ctrl), quadriceps femoris CSA decreased linearly over the 8 weeks of bed rest to -14.1 +/- 5.2% (P < 0.05). This reduction was significantly (P < 0.001) mitigated by the exercise paradigm (-3.5 +/- 4.2%; P < 0.05). Prior to and seven times during bed rest, maximal unilateral voluntary torque (MVT) values of the right leg were measured together with neural activation levels by means of a superimposed stimulation technique. For Ctrl, MVT decreased also linearly over time to -16.8 +/- 7.4% after 8 weeks of bed rest (P < 0.01), whereas the exercise paradigm fully maintained MVT during bed rest. In contrast to previous reports, the maximal voluntary activation remained unaltered for both groups throughout the study. For Ctrl, the absence of deterioration of the activation level might have been related to the repeated testing of muscle function during the bed rest. This notion was supported by the observation that for a subset of Ctrl subjects (n = 5) the MVT of the left leg, which was not tested during BR, was reduced by 20.5 +/- 10.1%, (P < 0.01) which was for those five subjects significantly (P < 0.05) more than the 11.1 +/- 9.2% (P < 0.01) reduction for the right, regularly tested leg.


Subject(s)
Bed Rest , Exercise/physiology , Quadriceps Muscle/physiology , Adult , Humans , Male , Muscle Contraction/physiology , Muscular Atrophy/physiopathology , Muscular Atrophy/prevention & control , Quadriceps Muscle/anatomy & histology , Supine Position/physiology , Torque , Vibration/therapeutic use , Weightlessness Countermeasures
2.
J Appl Physiol (1985) ; 97(5): 1693-701, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15180971

ABSTRACT

We investigated the capacity for torque development and muscle activation at the onset of fast voluntary isometric knee extensions at 30, 60, and 90 degrees knee angle. Experiments were performed in subjects (n = 7) who had high levels (>90%) of activation at the plateau of maximal voluntary contractions. During maximal electrical nerve stimulation (8 pulses at 300 Hz), the maximal rate of torque development (MRTD) and torque time integral over the first 40 ms (TTI40) changed in proportion with torque at the different knee angles (highest values at 60 degrees ). At each knee angle, voluntary MRTD and stimulated MRTD were similar (P < 0.05), but time to voluntary MRTD was significantly longer. Voluntary TTI40 was independent (P > 0.05) of knee angle and on average (all subjects and angles) only 40% of stimulated TTI40. However, among subjects, the averaged (across knee angles) values ranged from 10.3 +/- 3.1 to 83.3 +/- 3.2% and were positively related (r2 = 0.75, P < 0.05) to the knee-extensor surface EMG at the start of torque development. It was concluded that, although all subjects had high levels of voluntary activation at the plateau of maximal voluntary contraction, among subjects and independent of knee angle, the capacity for fast muscle activation varied substantially. Moreover, in all subjects, torque developed considerably faster during maximal electrical stimulation than during maximal voluntary effort. At different knee angles, stimulated MRTD and TTI40 changed in proportion with stimulated torque, but voluntary MRTD and TTI40 changed less than maximal voluntary torque.


Subject(s)
Knee/physiology , Muscle, Skeletal/physiology , Posture/physiology , Torque , Adult , Electric Stimulation , Electromyography , Humans , Male , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...