Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Pharmacol Transl Sci ; 6(10): 1518-1530, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37854619

ABSTRACT

Dry eye disease (DED), the most common ocular disorder, reduces the quality of life for hundreds of millions of people annually. In healthy eyes, the tear film lipid layer (TFLL) stabilizes the tear film and moderates the evaporation rate of tear fluid. In >80% of DED cases, these central features are compromised leading to tear film instability and excessive evaporation of tear fluid. Herein we assess the potential of liposomal formulations featuring phosphatidylcholines and tailored lipid species from the wax ester and O-acyl-ω-hydroxy fatty acid categories in targeting this defect. The developed lead formulation displays good evaporation-resistant properties and respreadability over compression-expansion cycles in our Langmuir model system and a promising safety and efficacy profile in vitro. Preclinical in vivo studies will in the future be required to further assess and validate the potential of this concept in the treatment of DED.

2.
Colloids Surf B Biointerfaces ; 223: 113145, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36701899

ABSTRACT

The tear film lipid layer (TFLL) is a unique biological membrane of importance to the maintenance of ocular surface health. The underlying factors at play, e.g. the ability to retard evaporation and offer protection from the environment, are all closely connected to the properties of individual lipid components and their interplay. The TFLL contains unique ultra-long polar lipid species such as O-acyl-ω-hydroxy fatty acids, type I-St diesters and type II diesters, which are considered important for its proper function. Herein, we have synthesized model compounds from these categories and studied their biophysical and surface rheological properties at the aqueous interface. Altogether, we provide insights on the distinct biophysical profiles of these lipid classes and discuss how their interplay may affect the structure and function of the TFLL.


Subject(s)
Lipids , Tears , Lipids/chemistry , Tears/chemistry , Fatty Acids , Surface Properties , Eye
3.
Colloids Surf B Biointerfaces ; 214: 112429, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35278859

ABSTRACT

The tear film lipid layer (TFLL) is important to the maintenance of ocular surface health. Surprisingly, information on the individual roles of the myriad of unique lipids found therein is limited. The most abundant lipid species are the wax esters (WE) and cholesteryl esters (CE), and, especially their branched analogs. The isolation of these lipid species from the TFLL has proved to be tedious, and as a result, insights on their biophysical profiles and role in the TFLL is currently lacking. Herein, we circumvent these issues by a total synthesis of the most abundant iso-methyl branched WEs and CEs found in the TFLL. Through a detailed characterization of the biophysical properties, by the use of Langmuir monolayer and wide-angle X-ray scattering techniques, we demonstrate that chain branching alters the behavior of these lipid species on multiple levels. Taken together, our results fill an important knowledge gap concerning the structure and function of the TFLL on the whole.


Subject(s)
Cholesterol Esters , Lipids , Biophysics , Cholesterol Esters/chemistry , Esters , Lipids/chemistry , Tears/chemistry
4.
J Phys Chem Lett ; 13(5): 1307-1313, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35104407

ABSTRACT

Coexisting liquid ordered (Lo) and liquid disordered (Ld) lipid phases in synthetic and plasma membrane-derived vesicles are commonly used to model the heterogeneity of biological membranes, including their putative ordered rafts. However, raft-associated proteins exclusively partition to the Ld and not the Lo phase in these model systems. We believe that the difference stems from the different microscopic structures of the lipid rafts at physiological temperature and the Lo phase studied at room temperature. To probe this structural diversity across temperatures, we performed atomistic molecular dynamics simulations, differential scanning calorimetry, and fluorescence spectroscopy on Lo phase membranes. Our results suggest that raft-associated proteins are excluded from the Lo phase at room temperature due to the presence of a stiff, hexagonally packed lipid structure. This structure melts upon heating, which could lead to the preferential solvation of proteins by order-preferring lipids. This structural transition is manifested as a subtle crossover in membrane properties; yet, both temperature regimes still fulfill the definition of the Lo phase. We postulate that in the compositionally complex plasma membrane and in vesicles derived therefrom, both molecular structures can be present depending on the local lipid composition. These structural differences must be taken into account when using synthetic or plasma membrane-derived vesicles as a model for cellular membrane heterogeneity below the physiological temperature.

6.
Nano Lett ; 21(18): 7676-7683, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34468151

ABSTRACT

In healthy eyes, the tear film lipid layer (TFLL) is considered to act as an evaporation resistant barrier, which prevents eyes from drying. Seeking to understand the mechanisms behind the evaporation resistance of the TFLL, we studied mixtures of lipid layer wax esters and O-acyl-ω-hydroxy fatty acids. Analyzing their self-assembly and biophysical properties led to new discoveries concerning the structure and function of the TFLL. We discovered how these lipids self-assemble at the air-water interface and form an efficient antievaporative barrier, demonstrating for the first time how the interaction of different tear film lipid species can improve the evaporation resistance compared with individual lipid classes on their own. These results provide a potential mechanism for the evaporation resistance of the lipid layer. In addition, the results serve as a base for the future development of improved dry eye treatments and other applications where the evaporation of water represents a significant challenge.


Subject(s)
Esters , Lipids , Biophysics , Fatty Acids , Tears
7.
J Org Chem ; 86(7): 4965-4976, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33729799

ABSTRACT

The tear film lipid layer (TFLL) that covers the ocular surface contains several unique lipid classes, including O-acyl-ω-hydroxy fatty acids, type I-St diesters, and type II diesters. While the TFLL represents a unique biological barrier that plays a central role in stabilizing the entire tear film, little is known about the properties and roles of individual lipid species. This is because their isolation from tear samples in sufficient quantities is a tedious task. To provide access to these species in their pure form, and to shed light on their properties, we here report a general strategy for the synthesis and structural characterization of these lipid classes. In addition, we study the organization and behavior of the lipids at the air-tear interface. Through these studies, new insights on the relationship between structural features, such as number of double bonds and the chain length, and film properties, such as spreading and evaporation resistance, were uncovered.


Subject(s)
Lipids , Tears , Biophysics , Fatty Acids
8.
Front Cell Dev Biol ; 8: 581016, 2020.
Article in English | MEDLINE | ID: mdl-33304898

ABSTRACT

Pulmonary surfactant is a complex mixture of lipids and proteins lining the interior of the alveoli, and constitutes the first barrier to both oxygen and pathogens as they progress toward blood circulation. Despite decades of study, the behavior of the pulmonary surfactant at the molecular scale is poorly understood, which hinders the development of effective surfactant replacement therapies, useful in the treatment of several lung-related diseases. In this work, we combined all-atom molecular dynamics simulations, Langmuir trough measurements, and AFM imaging to study synthetic four-component lipid monolayers designed to model protein-free pulmonary surfactant. We characterized the structural and dynamic properties of the monolayers with a special focus on lateral heterogeneity. Remarkably, simulations reproduce almost quantitatively the experimental data on pressure-area isotherms and the presence of lateral heterogeneities highlighted by AFM. Quite surprisingly, the pressure-area isotherms do not show a plateau region, despite the presence of liquid-condensed nanometer-sized domains at surface pressures larger than 20 mN/m. In the simulations, the liquid-condensed domains were small and transient, but they did not coalesce to yield a separate phase. They were only slightly enriched in DPPC and cholesterol, and their chemical composition remained very similar to the overall composition of the monolayer membrane. Instead, they differed from liquid-expanded regions in terms of membrane thickness (in agreement with AFM data), diffusion rates, as well as acyl chain packing and orientation. We hypothesize that such lateral heterogeneities are crucial for lung surfactant function, as they allow both efficient packing, to achieve low surface tension, and sufficient fluidity, critical for rapid adsorption to the air-liquid interface during the breathing cycle.

9.
Ocul Surf ; 18(4): 545-553, 2020 10.
Article in English | MEDLINE | ID: mdl-32562857

ABSTRACT

PURPOSE: The tear film lipid layer (TFLL) covers the tear film, stabilizing it and providing a protective barrier against the environment. The TFLL is divided into polar and non-polar sublayers, but the interplay between lipid classes in these sublayers and the structure-function relationship of the TFLL remains poorly characterized. This study aims to provide insight into TFLL function by elucidating the interactions between polar and non-polar TFLL lipids at the molecular level. METHODS: Mixed films of polar O-acyl-ω-hydroxy fatty acids (OAHFA) or phospholipids and non-polar cholesteryl esters (CE) were used as a model of the TFLL. The organization of the films was studied by using a combination of Brewster angle and fluorescence microscopy in a Langmuir trough system. In addition, the evaporation resistance of the lipid films was evaluated. RESULTS: Phospholipids and OAHFAs induced the formation of a stable multilamellar CE film. The formation of this film was driven by the interdigitation of acyl chains between the monolayer of polar lipids and the CE multilayer lamellae. Surprisingly, the multilayer structure was destabilized by both low and high concentrations of polar lipids. In addition, the CE multilayer was no more effective in resisting the evaporation of water than a polar lipid monolayer. CONCLUSIONS: Formation of multilamellar films by major tear film lipids suggest that the TFLL may have a similar structure. Moreover, in contrast to the current understanding, polar TFLL lipids may not mainly act by stabilizing the non-polar TFLL sublayer, but through a direct evaporation resistant effect.


Subject(s)
Tears , Cholesterol Esters , Fatty Acids , Lipids
10.
Tissue Eng Regen Med ; 17(4): 477-493, 2020 08.
Article in English | MEDLINE | ID: mdl-32449039

ABSTRACT

BACKGROUND: Insufficient vascularization hampers bone tissue engineering strategies for reconstructing large bone defects. Delivery of prolyl-hydroxylase inhibitors (PHIs) is an interesting approach to upregulate vascular endothelial growth factor (VEGF) by mimicking hypoxic stabilization of hypoxia-inducible factor-1alpha (HIF-1α). This study assessed two PHIs: dimethyloxalylglycine (DMOG) and baicalein for their effects on human adipose tissue-derived mesenchymal stem/stromal cells (AT-MSCs). METHODS: Isolated AT-MSCs were characterized and treated with PHIs to assess the cellular proliferation response. Immunostaining and western-blots served to verify the HIF-1α stabilization response. The optimized concentrations for long-term treatment were tested for their effects on the cell cycle, apoptosis, cytokine secretion, and osteogenic differentiation of AT-MSCs. Gene expression levels were evaluated for alkaline phosphatase (ALPL), bone morphogenetic protein 2 (BMP2), runt-related transcription factor 2 (RUNX2), vascular endothelial growth factor A (VEGFA), secreted phosphoprotein 1 (SPP1), and collagen type I alpha 1 (COL1A1). In addition, stemness-related genes Kruppel-like factor 4 (KLF4), Nanog homeobox (NANOG), and octamer-binding transcription factor 4 (OCT4) were assessed. RESULTS: PHIs stabilized HIF-1α in a dose-dependent manner and showed evident dose- and time dependent antiproliferative effects. With doses maintaining proliferation, DMOG and baicalein diminished the effect of osteogenic induction on the expression of RUNX2, ALPL, and COL1A1, and suppressed the formation of mineralized matrix. Suppressed osteogenic response of AT-MSCs was accompanied by an upregulation of stemness-related genes. CONCLUSION: PHIs significantly reduced the osteogenic differentiation of AT-MSCs and rather upregulated stemness-related genes. PHIs proangiogenic potential should be weighed against their longterm direct inhibitory effects on the osteogenic differentiation of AT-MSCs.


Subject(s)
Osteogenesis , Vascular Endothelial Growth Factor A , Adipose Tissue , Cell Hypoxia , Collagen Type I, alpha 1 Chain , Humans , Kruppel-Like Factor 4 , Stromal Cells
11.
Sci Rep ; 10(1): 1369, 2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31974424

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
J Phys Chem Lett ; 10(14): 3893-3898, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31260321

ABSTRACT

Dry eye syndrome (DES), one of the most common ophthalmological diseases, is typically caused by excessive evaporation of tear fluid from the ocular surface. Excessive evaporation is linked to impaired function of the tear film lipid layer (TFLL) that covers the aqueous tear film. The principles of the evaporation resistance of the TFLL have remained unknown, however. We combined atomistic simulations with Brewster angle microscopy and surface potential experiments to explore the organization and evaporation resistance of films composed of wax esters, one of the main components of the TFLL. The results provide evidence that the evaporation resistance of the TFLL is based on crystalline-state layers of wax esters and that the evaporation rate is determined by defects in the TFLL and its coverage on the ocular surface. On the basis of the results, uncovering the nonequilibrium spreading and crystallization of TFLL films has potential to reveal new means of treating DES.

13.
Sci Rep ; 9(1): 5538, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30940830

ABSTRACT

In the research field of extracellular vesicles (EVs), the use of fetal bovine serum (FBS) depleted of EVs for in vitro studies is advocated to eliminate the confounding effects of media derived EVs. EV-depleted FBS may either be prepared by ultracentrifugation or purchased commercially. Nevertheless, these preparations do not guarantee an RNA-free FBS for in vitro use. In this study we address the RNA contamination issue, of small non-coding (nc)RNA in vesicular or non-vesicular fractions of FBS, ultracentrifugation EV-depleted FBS, commercial EV-depleted FBS, and in our recently developed filtration based EV-depleted FBS. Commercially available serum- and xeno-free defined media were also screened for small ncRNA contamination. Our small ncRNA sequencing data showed that all EV-depleted media and commercially available defined media contained small ncRNA contaminants. Out of the different FBS preparations studied, our ultrafiltration-based method for EV depletion performed the best in depleting miRNAs. Certain miRNAs such miR-122 and miR-203a proved difficult to remove completely and were found in all media. Compared to miRNAs, other small ncRNA (snRNA, Y RNA, snoRNA, and piRNA) were difficult to eliminate from all the studied media. Additionally, our tested defined media contained miRNAs and other small ncRNAs, albeit at a much lower level than in serum preparations. Our study showed that no media is free of small ncRNA contaminants. Therefore, in order to screen for baseline RNA contamination in culturing media, RNA sequencing data should be carefully controlled by adding a media sample as a control. This should be a mandatory step before performing cell culture experiments in order to eliminate the confounding effects of media.


Subject(s)
Culture Media, Serum-Free/analysis , MicroRNAs/analysis , Serum/chemistry , Animals , Cattle , Extracellular Vesicles/genetics , Humans , Sequence Analysis, RNA
14.
Langmuir ; 35(9): 3545-3552, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30712353

ABSTRACT

Dry eye syndrome (DES) is a prevalent disease in which the tear film homeostasis is compromised. One of the main causes of DES is thought to be an alteration in the composition of the outermost layer of the tear film, the tear film lipid layer (TFLL), resulting in an increased evaporation of water from the tear film and subsequent drying of the ocular surface. Recent studies have suggested that the specific TFLL lipids, namely, O-acyl-ω-hydroxy fatty acids (OAHFAs) and diesters (DiEs), may play a role in the development of DES. However, their specific connection to DES has remained largely unknown until now because of the lack of information on their biophysical properties and their role in the TFLL. Herein, we have addressed this issue by studying the biophysical properties and evaporation resistance of a library containing 10 synthetic analogues of TFLL OAHFAs and DiEs. Our results show how the variations of chain length and polar groups affect the phase behavior of these lipids at the tear film surface. In addition, the results revealed that the OAHFAs exhibiting a liquid-expanded to solid phase transition formed films with high evaporation resistance, whereas the DiEs were found to have no evaporation resistance. Altogether, our results shed new light on the role of the OAHFAs and DiEs in the TFLL and their connection to DES, suggesting that OAHFAs are likely a key lipid class in maintaining the TFLL evaporation resistance.


Subject(s)
Esters/chemistry , Fatty Acids/chemistry , Tears/chemistry , Dry Eye Syndromes/etiology , Esters/chemical synthesis , Fatty Acids/chemical synthesis , Humans , Molecular Structure , Structure-Activity Relationship , Surface Properties
15.
Sci Rep ; 8(1): 15503, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30341351

ABSTRACT

Extracellular vesicles (EVs) are reported to be involved in stem cell maintenance, self-renewal, and differentiation. Due to their bioactive cargoes influencing cell fate and function, interest in EVs in regenerative medicine has rapidly increased. EV-derived small non-coding RNA mimic the functions of the parent stem cells, regulating the maintenance and differentiation of stem cells, controlling the intercellular regulation of gene expression, and eventually affecting the cell fate. In this study, we used RNA sequencing to provide a comprehensive overview of the expression profiles of small non-coding transcripts carried by the EVs derived from human adipose tissue stromal/stem cells (AT-MSCs) and human pluripotent stem cells (hPSCs), both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSC). Both hPSCs and AT-MSCs were characterized and their EVs were extracted using standard protocols. Small non-coding RNA sequencing from EVs showed that hPSCs and AT-MSCs showed distinct profiles, unique for each stem cell source. Interestingly, in hPSCs, most abundant miRNAs were from specific miRNA families regulating pluripotency, reprogramming and differentiation (miR-17-92, mir-200, miR-302/367, miR-371/373, CM19 microRNA cluster). For the AT-MSCs, the highly expressed miRNAs were found to be regulating osteogenesis (let-7/98, miR-10/100, miR-125, miR-196, miR-199, miR-615-3p, mir-22-3p, mir-24-3p, mir-27a-3p, mir-193b-5p, mir-195-3p). Additionally, abundant small nuclear and nucleolar RNA were detected in hPSCs, whereas Y- and tRNA were found in AT-MSCs. Identification of EV-miRNA and non-coding RNA signatures released by these stem cells will provide clues towards understanding their role in intracellular communication, and well as their roles in maintaining the stem cell niche.


Subject(s)
Extracellular Vesicles/metabolism , Human Embryonic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , RNA, Untranslated/metabolism , Adipose Tissue/cytology , Cells, Cultured , Cluster Analysis , Extracellular Vesicles/ultrastructure , Humans , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Untranslated/genetics
16.
Invest Ophthalmol Vis Sci ; 56(13): 8054-62, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26720456

ABSTRACT

PURPOSE: Tear film lipid layer (TFLL) is constantly exposed to reactive ozone in the surrounding air, which may have detrimental effects on ocular health. Behenyl oleate (BO), a representative tear film wax ester, was used to study the reaction with ozone at the air-water interface. METHODS: Time-dependent changes in mean molecular area of BO monolayers were measured at different ozone concentrations and surface pressures. In addition, the effect of ascorbic acid on the reaction rate was determined. Reaction was followed using thin-layer chromatography and reaction products were identified using liquid chromatography-electrospray ionization mass spectrometry (LC-MS). Tear fluid samples from healthy subjects were analyzed with LC-MS for any ozonolysis reaction products. RESULTS: Behenyl oleate was found to undergo rapid ozonolysis at the air-water interface at normal indoor ozone concentrations. The reaction was observed as an initial expansion followed by a contraction of the film area. Ascorbic acid was found to decrease the rate of ozonolysis. Main reaction products were identified as behenyl 9-oxononanoate and behenyl 8-(5-octyl-1,2,4-trioxolan-3-yl)octanoate. Similar ozonolysis products were not detected in the tear fluid samples. CONCLUSIONS: At the air-water interface, unsaturated wax esters react readily with ozone in ambient air. However, no signs of ozonolysis products were found in the tear fluid. This is most likely due to the antioxidant systems present in tear fluid. Last, the results show that ozonolysis needs to be controlled in future surface chemistry studies on tear film lipids.


Subject(s)
Esters/metabolism , Oxidants, Photochemical/pharmacology , Ozone/pharmacology , Tears/chemistry , Adult , Cholesterol Esters/metabolism , Chromatography, Thin Layer , Fatty Acids/metabolism , Female , Humans , Lysophospholipids/metabolism , Male , Oleic Acid/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Triglycerides/metabolism
17.
Langmuir ; 30(20): 5897-902, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24784703

ABSTRACT

The tear film lipid layer (TFLL) is considered to act as an evaporation barrier and to maintain the tear film intact between blinks. In vitro methods have, however, failed to reproduce this evaporation-retarding effect. Wax esters (WEs) are a major component of the TFLL. Close to their bulk melting temperature, WEs have been found to retard the evaporation of water, but the nature of this mechanism has remained unclear. We studied the interfacial organization of WE films by measuring their isochors and isotherms and evaporation-retarding effect, and we imaged these films by Brewster angle microscopy (BAM). Behenyl palmitoleate (BP) was used as a representative WE because it resembles the WEs found in meibum. At low temperatures, BP forms solid monolayer crystals in which the molecules are organized in a bulk-like extended conformation. Within approximately 3 °C below the bulk melting temperature, these solid monolayer domains coexist with a fluid monolayer film. At temperatures above the bulk melting temperature, BP forms a completely fluid monolayer in which the molecules are in a hairpin conformation. A fluid hairpin monolayer of BP does not significantly retard evaporation, whereas a solid monolayer decreases evaporation by >50%. The results provide a molecular-level rationale for the evaporation-retarding properties of WEs close to their melting temperature.


Subject(s)
Lipids/chemistry , Models, Chemical , Surface Tension
18.
Biophys J ; 103(2): 247-54, 2012 Jul 18.
Article in English | MEDLINE | ID: mdl-22853902

ABSTRACT

Lipid lateral segregation in the plasma membrane is believed to play an important role in cell physiology. Sphingomyelin (SM) and cholesterol (Chol)-enriched microdomains have been proposed as liquid-ordered phase platforms that serve to localize signaling complexes and modulate the intrinsic activities of the associated proteins. We modeled plasma membrane domain organization using Langmuir monolayers of ternary POPC/SM/Chol as well as DMPC/SM/Chol mixtures, which exhibit a surface-pressure-dependent miscibility transition of the coexisting liquid-ordered and -disordered phases. Using Brewster angle microscopy and Langmuir monolayer compression isotherms, we show that the presence of an oxidatively modified phosphatidylcholine, 1-palmitoyl-2-azelaoyl-sn-glydecero-3-phosphocholine, efficiently opposes the miscibility transition and stabilizes micron-sized domain separation at lipid lateral packing densities corresponding to the equilibrium lateral pressure of ∼32 mN/m that is suggested to prevail in bilayer membranes. This effect is ascribed to augmented hydrophobic mismatch induced by the oxidatively truncated phosphatidylcholine. To our knowledge, our results represent the first quantitative estimate of the relevant level of phospholipid oxidation that can potentially induce changes in cell membrane organization and its associated functions.


Subject(s)
Cholesterol/chemistry , Phase Transition , Phosphatidylcholines/chemistry , Sphingomyelins/chemistry , Microscopy , Oxidation-Reduction , Pressure , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...