Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 103(3): 032502, 2009 Jul 17.
Article in English | MEDLINE | ID: mdl-19659271

ABSTRACT

The electric-dipole response of 140Ce is investigated using the fully consistent relativistic quasiparticle random phase approximation. By analyzing the isospin structure of the E1 response, it is shown that the low-energy (pygmy) strength separates into two segments with different isospin character. The more pronounced pygmy structure at lower energy is composed of predominantly isoscalar states with surface-peaked transition densities. At somewhat higher energy the calculated E1 strength is primarily of isovector character, as expected for the low-energy tail of the giant dipole resonance. The results are in qualitative agreement with those obtained in recent (gamma, gamma') and (alpha, alpha'gamma) experiments, and provide a simple explanation for the splitting of low-energy E1 strength into two groups of states with different isospin structure and radial dependence of the corresponding transition densities.

2.
Phys Rev Lett ; 94(18): 182501, 2005 May 13.
Article in English | MEDLINE | ID: mdl-15904364

ABSTRACT

The evolution of the low-lying E1 strength in proton-rich nuclei is analyzed in the framework of the self-consistent relativistic Hartree-Bogoliubov model and the relativistic quasiparticle random-phase approximation (RQRPA). Model calculations are performed for a series of N=20 isotones and Z=18 isotopes. For nuclei close to the proton drip line, the occurrence of pronounced dipole peaks is predicted in the low-energy region below 10 MeV excitation energy. From the analysis of the proton and neutron transition densities and the structure of the RQRPA amplitudes, it is shown that these states correspond to the proton pygmy dipole resonance.

3.
Phys Rev Lett ; 91(26 Pt 1): 262502, 2003 Dec 31.
Article in English | MEDLINE | ID: mdl-14754046

ABSTRACT

The Gamow-Teller resonances (GTR) and isobaric analog states (IAS) of a sequence of even-even Sn target nuclei are calculated by using the framework of the relativistic Hartree-Bogoliubov model plus proton-neutron quasiparticle random-phase approximation. The calculation reproduces the experimental data on ground-state properties, as well as the excitation energies of the isovector excitations. It is shown that the isotopic dependence of the energy spacings between the GTR and IAS provides direct information on the evolution of neutron-skin thickness along the Sn isotopic chain. A new method is suggested for determining the difference between the radii of the neutron and proton density distributions along an isotopic chain, based on measurement of the excitation energies of the GTR relative to the IAS.

4.
Article in English | MEDLINE | ID: mdl-11969765

ABSTRACT

The dynamics of monopole giant resonances in nuclei is analyzed in the time-dependent relativistic mean-field model. The phase spaces of isoscalar and isovector collective oscillations are reconstructed from the time series of dynamical variables that characterize the proton and neutron density distributions. The analysis of the resulting recurrence plots and correlation dimensions indicates regular motion for the isoscalar mode, and chaotic dynamics for the isovector oscillations. Information-theoretic functionals identify and quantify the nonlinear dynamics of giant resonances in quantum systems that have spatial as well as temporal structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...