Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 7988, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580715

ABSTRACT

In the human genome, heterozygous sites refer to genomic positions with a different allele or nucleotide variant on the maternal and paternal chromosomes. Resolving these allelic differences by chromosomal copy, also known as phasing, is achievable on a short-read sequencer when using a library preparation method that captures long-range genomic information. TELL-Seq is a library preparation that captures long-range genomic information with the aid of molecular identifiers (barcodes). The same barcode is used to tag the reads derived from the same long DNA fragment within a range of up to 200 kilobases (kb), generating linked-reads. This strategy can be used to phase an entire genome. Here, we introduce a TELL-Seq protocol developed for targeted applications, enabling the phasing of enriched loci of varying sizes, purity levels, and heterozygosity. To validate this protocol, we phased 2-200 kb loci enriched with different methods: CRISPR/Cas9-mediated excision coupled with pulse-field electrophoresis for the longest fragments, CRISPR/Cas9-mediated protection from exonuclease digestion for mid-size fragments, and long PCR for the shortest fragments. All selected loci have known clinical relevance: BRCA1, BRCA2, MLH1, MSH2, MSH6, APC, PMS2, SCN5A-SCN10A, and PKI3CA. Collectively, the analyses show that TELL-Seq can accurately phase 2-200 kb targets using a short-read sequencer.


Subject(s)
Genomics , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , DNA/genetics , Genome, Human
2.
Genome Biol Evol ; 15(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37883709

ABSTRACT

The marine tetraflagellate Cymbomonas tetramitiformis has drawn attention as an early diverging green alga that uses a phago-mixotrophic mode of nutrition (i.e., the ability to derive nourishment from both photosynthesis and bacterial prey). The Cymbomonas nuclear genome was sequenced previously, but due to the exclusive use of short-read (Illumina) data, the assembly suffered from missing a large proportion of the genome's repeat regions. For this study, we generated Oxford Nanopore long-read and additional short-read Illumina data and performed a hybrid assembly that significantly improved the total assembly size and contiguity. Numerous endogenous viral elements were identified in the repeat regions of the new assembly. These include the complete genome of a giant Algavirales virus along with many genomes of integrated Polinton-like viruses (PLVs) from two groups: Gezel-like PLVs and a novel group of prasinophyte-specific PLVs. The integrated ∼400 kb genome of the giant Algavirales virus is the first account of the association of the uncultured viral family AG_03 with green algae. The complete PLV genomes from C. tetramitiformis ranged between 15 and 25 kb in length and showed a diverse gene content. In addition, heliorhodopsin gene-containing repeat elements of putative mirusvirus origin were identified. These results illustrate past (and possibly ongoing) multiple alga-virus interactions that accompanied the genome evolution of C. tetramitiformis.


Subject(s)
Chlorophyta , Viruses , Genome , Chlorophyta/genetics , Photosynthesis , Viruses/genetics , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Genome, Viral
3.
Am J Bot ; 104(5): 733-742, 2017 May.
Article in English | MEDLINE | ID: mdl-28490519

ABSTRACT

PREMISE OF RESEARCH: Natural populations of many mosses appear highly female-biased based on the presence of reproductive structures. This bias could be caused by increased male mortality, lower male growth rate, or a higher threshold for achieving sexual maturity in males. Here we test these hypotheses using samples from two populations of the Mojave Desert moss Syntrichia caninervis. METHODS: We used double-digest restriction-site associated DNA (RAD) sequencing to identify candidate sex-associated loci in a panel of sex-expressing plants. Next, we used putative sex-associated markers to identify the sex of individuals without sex structures. KEY RESULTS: We found a 17:1 patch-level phenotypic female to male sex ratio in the higher elevation site (Wrightwood) and no sex expression at the low elevation site (Phelan). In contrast, on the basis of genetic data, we found a 2:1 female bias at the Wrightwood site and only females at the Phelan site. The relative area occupied by male and female genets was indistinguishable, but males were less genetically diverse. CONCLUSIONS: Our data suggest that both male-biased mortality and sexual dimorphism in thresholds for sex expression could explain genetic and phenotypic sex ratio biases and that phenotypic sex expression alone over-estimates the extent of actual sex ratio bias present in these two populations of S. caninervis.


Subject(s)
Bryopsida/physiology , Desert Climate , Bryopsida/genetics , Environment , Phenotype , Sequence Analysis, DNA , Sex Ratio , Southwestern United States
4.
Genome Announc ; 4(3)2016 Jun 16.
Article in English | MEDLINE | ID: mdl-27313295

ABSTRACT

We report here the complete chloroplast genome sequence of Cymbomonas tetramitiformis strain PLY262, which is a prasinophycean green alga that retains a phagomixotrophic mode of nutrition. The genome is 84,524 bp in length, with a G+C content of 37%, and contains 3 rRNAs, 26 tRNAs, and 76 protein-coding genes.

5.
Genome Biol Evol ; 7(11): 3047-61, 2015 Jul 29.
Article in English | MEDLINE | ID: mdl-26224703

ABSTRACT

Cymbomonas tetramitiformis-a marine prasinophyte-is one of only a few green algae that still retain an ancestral particulate-feeding mechanism while harvesting energy through photosynthesis. The genome of the alga is estimated to be 850 Mb-1.2 Gb in size-the bulk of which is filled with repetitive sequences-and is annotated with 37,366 protein-coding gene models. A number of unusual metabolic pathways (for the Chloroplastida) are predicted for C. tetramitiformis, including pathways for Lipid-A and peptidoglycan metabolism. Comparative analyses of the predicted peptides of C. tetramitiformis to sets of other eukaryotes revealed that nonphagocytes are depleted in a number of genes, a proportion of which have known function in feeding. In addition, our analysis suggests that obligatory phagotrophy is associated with the loss of genes that function in biosynthesis of small molecules (e.g., amino acids). Further, C. tetramitiformis and at least one other phago-mixotrophic alga are thus unique, compared with obligatory heterotrophs and nonphagocytes, in that both feeding and small molecule synthesis-related genes are retained in their genomes. These results suggest that early, ancestral host eukaryotes that gave rise to phototrophs had the capacity to assimilate building block molecules from inorganic substances (i.e., prototrophy). The loss of biosynthesis genes, thus, may at least partially explain the apparent lack of instances of permanent incorporation of photosynthetic endosymbionts in later-divergent, auxotrophic eukaryotic lineages, such as metazoans and ciliates.


Subject(s)
Algal Proteins/genetics , Biological Evolution , Chlorophyta/genetics , Metabolic Networks and Pathways/genetics , Chlorophyta/physiology , Comparative Genomic Hybridization , DNA, Algal/genetics , Phagocytosis , Photosynthesis/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...