Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 9(3)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192029

ABSTRACT

Despite overcoming many implementation barriers, pharmacogenomic (PGx) panel-testing is not routine practice in the Netherlands. Therefore, we aim to study pharmacists' perceived enablers and barriers for PGx panel-testing among pharmacists participating in a PGx implementation study. Here, pharmacists identify primary care patients, initiating one of 39 drugs with a Dutch Pharmacogenetic Working Group (DPWG) recommendation and subsequently utilizing the results of a 12 gene PGx panel test to guide dose and drug selection. Pharmacists were invited for a general survey and a semi-structured interview based on the Tailored Implementation for Chronic Diseases (TICD) framework, aiming to identify implementation enablers and barriers, if they had managed at least two patients with actionable PGx results. In total, 15 semi-structured interviews were performed before saturation point was reached. Of these, five barrier themes emerged: (1) unclear procedures, (2) undetermined reimbursement for PGx test and consult, (3) insufficient evidence of clinical utility for PGx panel-testing, (4) infrastructure inefficiencies, and (5) HCP PGx knowledge and awareness; and two enabler themes: (1) pharmacist perceived role in delivering PGx, and (2) believed clinical utility of PGx. Despite a strong belief in the beneficial effects of PGx, pharmacists' barriers remain, an these hinder implementation in primary care.

2.
J Med Chem ; 60(17): 7555-7568, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28806076

ABSTRACT

We expanded on a series of pyrido[2,1-f]purine-2,4-dione derivatives as human adenosine A3 receptor (hA3R) antagonists to determine their kinetic profiles and affinities. Many compounds showed high affinities and a diverse range of kinetic profiles. We found hA3R antagonists with very short residence time (RT) at the receptor (2.2 min for 5) and much longer RTs (e.g., 376 min for 27 or 391 min for 31). Two representative antagonists (5 and 27) were tested in [35S]GTPγS binding assays, and their RTs appeared correlated to their (in)surmountable antagonism. From a kon-koff-KD kinetic map, we divided the antagonists into three subgroups, providing a possible direction for the further development of hA3R antagonists. Additionally, we performed a computational modeling study that sheds light on the crucial receptor interactions, dictating the compounds' binding kinetics. Knowledge of target binding kinetics appears useful for developing and triaging new hA3R antagonists in the early phase of drug discovery.


Subject(s)
Adenosine A3 Receptor Antagonists/chemistry , Adenosine A3 Receptor Antagonists/pharmacology , Purines/chemistry , Purines/pharmacology , Receptor, Adenosine A3/metabolism , Animals , CHO Cells , Cricetulus , Humans , Kinetics , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...