Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 17: 1147547, 2023.
Article in English | MEDLINE | ID: mdl-37214391

ABSTRACT

Introduction: Deep brain stimulation (DBS) is a rapidly developing therapeutic intervention with constantly expanding neurological and psychiatric indications. A major challenge for the approach is the precise targeting and limitation of the effect on the desired neural pathways. We have introduced a new approach, orientation selective stimulation (OSS) that allows free rotation of the induced electric field on a plane when using a probe with three parallel electrodes forming an equilateral triangle at the tip. Here, we expand the technique by introducing a tetrahedral stimulation probe that enables adjustment of the primary electric field direction freely at any angle in a 3D space around the stimulating probe. OSS in 3D will enable better targeting of the electric field according to the local brain anatomy. We tested its utility in a rat model of DBS for treatment-resistant depression. The stimulation directed to the subgenual anterior cingulate cortex (sgACC) has yielded dramatic improvement in individual patients suffering from therapy resistant depression, but no consistent benefit in larger series. This failure has been ascribed to the challenging anatomy of sgACC with several crossing neural tracts and individual differences in the local anatomy. Methods: We stimulated infralimbic cortex (IL), the rat analog of sgACC, and recorded local electrical responses in amygdala (AMG) that is monosynaptically connected to IL and plays a central role in emotional states. We further traced AMG-IL connections using a viral vector and tractography using diffusion magnetic resonance imaging (MRI). Finally, we mimicked the clinical situation by delivering sustained 130 Hz stimulation at IL at the most effective field orientation and followed changes in resting-state functional connectivity with IL using functional MRI. To help interpretation of responses in functional connectivity, we stimulated only the left IL, which we did not expect to evoke measurable changes in the rat behavior. Results: The AMG evoked responses depended systematically on the IL stimulation field orientation and yielded the maximum response in near vertical field orientation in accordance with tractography. Sustained 130 Hz stimulation at a field orientation yielding the strongest AMG evoked responses increased functional connectivity between IL and AMG on the stimulation side. Conclusion: These findings suggest that OSS in 3D provides a new approach to optimize the DBS for every individual patient with a single stimulation probe implantation.

2.
Neuroimage ; 250: 118924, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35065267

ABSTRACT

Understanding the link between the brain activity and behavior is a key challenge in modern neuroscience. Behavioral neuroscience, however, lacks tools to record whole-brain activity in complex behavioral settings. Here we demonstrate that a novel Multi-Band SWeep Imaging with Fourier Transformation (MB-SWIFT) functional magnetic resonance imaging (fMRI) approach enables whole-brain studies in spontaneously behaving head-fixed rats. First, we show anatomically relevant functional parcellation. Second, we show sensory, motor, exploration, and stress-related brain activity in relevant networks during corresponding spontaneous behavior. Third, we show odor-induced activation of olfactory system with high correlation between the fMRI and behavioral responses. We conclude that the applied methodology enables novel behavioral study designs in rodents focusing on tasks, cognition, emotions, physical exercise, and social interaction. Importantly, novel zero echo time and large bandwidth approaches, such as MB-SWIFT, can be applied for human behavioral studies, allowing more freedom as body movement is dramatically less restricting factor.


Subject(s)
Behavior, Animal/physiology , Brain Mapping/methods , Brain/physiology , Magnetic Resonance Imaging/instrumentation , Animals , Electroencephalography , Equipment Design , Head Movements , Rats , Rats, Sprague-Dawley
3.
Magn Reson Med ; 87(6): 2872-2884, 2022 06.
Article in English | MEDLINE | ID: mdl-34985145

ABSTRACT

PURPOSE: To develop a high temporal resolution functional MRI method for tracking repeating events in the brain. METHODS: We developed a novel functional MRI method using multiband sweep imaging with Fourier transformation (SWIFT), termed event-recurring SWIFT (EVER-SWIFT). The method is able to image similar repeating events with subsecond temporal resolution. Here, we demonstrate the use of EVER-SWIFT for detecting functional MRI responses during deep brain stimulation of the medial septal nucleus and during spontaneous isoflurane-induced burst suppression in the rat brain at 9.4 T with 200-ms temporal resolution. RESULTS: The EVER-SWIFT approach showed that the shapes and time-to-peak values of the response curves to deep brain stimulation significantly differed between downstream brain regions connected to the medial septal nucleus, resembling findings obtained with traditional 2-second temporal resolution. In contrast, EVER-SWIFT allowed for detailed temporal measurement of a spontaneous isoflurane-induced bursting activity pattern, which was not achieved with traditional temporal resolution. CONCLUSION: The EVER-SWIFT technique enables subsecond 3D imaging of both stimulated and spontaneously recurring brain activities, and thus holds great potential for studying the mechanisms of neuromodulation and spontaneous brain activity.


Subject(s)
Deep Brain Stimulation , Isoflurane , Animals , Brain/diagnostic imaging , Brain/physiology , Isoflurane/pharmacology , Magnetic Resonance Imaging/methods , Rats
4.
NMR Biomed ; 35(6): e4679, 2022 06.
Article in English | MEDLINE | ID: mdl-34961988

ABSTRACT

Traditionally, preclinical resting state functional magnetic resonance imaging (fMRI) studies have been performed in anesthetized animals. Nevertheless, as anesthesia affects the functional connectivity (FC) in the brain, there has been a growing interest in imaging in the awake state. Obviously, awake imaging requires resource- and time-consuming habituation prior to data acquisition to reduce the stress and motion of the animals. Light sedation has been a less widely exploited alternative for awake imaging, requiring shorter habituation times, while still reducing the effect of anesthesia. Here, we imaged 102 rats under light sedation and 10 awake animals to conduct an FC analysis. We established an automated data-processing pipeline suitable for both groups. Additionally, the same pipeline was used on data obtained from an openly available awake rat database (289 measurements in 90 rats). The FC pattern in the light sedation measurements closely resembled the corresponding patterns in both onsite and offsite awake datasets. However, fewer datasets had to be excluded due to movement in rats with light sedation. The temporal analysis of FC in the lightly sedated group indicated a lingering effect of anesthesia that stabilized after the first 5 min. In summary, our results indicate that the light sedation protocol is a valid alternative for large-scale studies where awake protocols may become prohibitively resource-demanding, as it provides similar results to awake imaging, preserves more scans, and requires shorter habituation times. The large amount of fMRI data obtained in this work are openly available for further analyses.


Subject(s)
Anesthesia , Habituation, Psychophysiologic , Anesthesia/methods , Animals , Brain/diagnostic imaging , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Rats , Wakefulness
5.
Neurobiol Dis ; 162: 105566, 2022 01.
Article in English | MEDLINE | ID: mdl-34838665

ABSTRACT

Temporal lobe epilepsy (TLE) is the most prevalent type of epilepsy in adults; it often starts in infancy or early childhood. Although TLE is primarily considered to be a grey matter pathology, a growing body of evidence links this disease with white matter abnormalities. In this study, we explore the impact of TLE onset and progression in the immature brain on white matter integrity and development utilising the rat model of Li-pilocarpine-induced TLE at the 12th postnatal day (P). Diffusion tensor imaging (DTI) and Black-Gold II histology uncovered disruptions in major white matter tracks (corpus callosum, internal and external capsules, and deep cerebral white matter) spreading through the whole brain at P28. These abnormalities were mostly not present any longer at three months after TLE induction, with only limited abnormalities detectable in the external capsule and deep cerebral white matter. Relaxation Along a Fictitious Field in the rotating frame of rank 4 indicated that white matter changes observed at both timepoints, P28 and P72, are consistent with decreased myelin content. The animals affected by TLE-induced white matter abnormalities exhibited increased functional connectivity between the thalamus and medial prefrontal and somatosensory cortex in adulthood. Furthermore, histological analyses of additional animal groups at P15 and P18 showed only mild changes in white matter integrity, suggesting a gradual age-dependent impact of TLE progression. Taken together, TLE progression in the immature brain distorts white matter development with a peak around postnatal day 28, followed by substantial recovery in adulthood. This developmental delay might give rise to cognitive and behavioural comorbidities typical for early-onset TLE.


Subject(s)
Epilepsy, Temporal Lobe , Status Epilepticus , White Matter , Adult , Animals , Child, Preschool , Diffusion Tensor Imaging , Epilepsy, Temporal Lobe/pathology , Humans , Myelin Sheath/pathology , Rats , Status Epilepticus/chemically induced , Status Epilepticus/pathology , White Matter/diagnostic imaging , White Matter/pathology
6.
Neuroimage ; 234: 117987, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33762218

ABSTRACT

Isoflurane, the most commonly used preclinical anesthetic, induces brain plasticity and long-term cellular and molecular changes leading to behavioral and/or cognitive consequences. These changes are most likely associated with network-level changes in brain function. To elucidate the mechanisms underlying long-term effects of isoflurane, we investigated the influence of a single isoflurane exposure on functional connectivity, brain electrical activity, and gene expression. Male Wistar rats (n = 22) were exposed to 1.8% isoflurane for 3 h. Control rats (n = 22) spent 3 h in the same room without exposure to anesthesia. After 1 month, functional connectivity was evaluated with resting-state functional magnetic resonance imaging (fMRI; n = 6 + 6) and local field potential measurements (n = 6 + 6) in anesthetized animals. A whole genome expression analysis (n = 10+10) was also conducted with mRNA-sequencing from cortical and hippocampal tissue samples. Isoflurane treatment strengthened thalamo-cortical and hippocampal-cortical functional connectivity. Cortical low-frequency fMRI power was also significantly increased in response to the isoflurane treatment. The local field potential results indicating strengthened hippocampal-cortical alpha and beta coherence were in good agreement with the fMRI findings. Furthermore, altered expression was found in 20 cortical genes, several of which are involved in neuronal signal transmission, but no gene expression changes were noted in the hippocampus. Isoflurane induced prolonged changes in thalamo-cortical and hippocampal-cortical function and expression of genes contributing to signal transmission in the cortex. Further studies are required to investigate whether these changes are associated with the postoperative behavioral and cognitive symptoms commonly observed in patients and animals.


Subject(s)
Anesthetics, Inhalation/administration & dosage , Brain/diagnostic imaging , Isoflurane/administration & dosage , Magnetic Resonance Imaging/trends , Nerve Net/diagnostic imaging , Neuronal Plasticity/drug effects , Anesthetics, Inhalation/toxicity , Animals , Brain/drug effects , Isoflurane/toxicity , Male , Nerve Net/drug effects , Neuronal Plasticity/physiology , Rats , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...