Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Microsc ; 253(1): 65-78, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24279418

ABSTRACT

Phase-contrast illumination is simple and most commonly used microscopic method to observe nonstained living cells. Automatic cell segmentation and motion analysis provide tools to analyze single cell motility in large cell populations. However, the challenge is to find a sophisticated method that is sufficiently accurate to generate reliable results, robust to function under the wide range of illumination conditions encountered in phase-contrast microscopy, and also computationally light for efficient analysis of large number of cells and image frames. To develop better automatic tools for analysis of low magnification phase-contrast images in time-lapse cell migration movies, we investigated the performance of cell segmentation method that is based on the intrinsic properties of maximally stable extremal regions (MSER). MSER was found to be reliable and effective in a wide range of experimental conditions. When compared to the commonly used segmentation approaches, MSER required negligible preoptimization steps thus dramatically reducing the computation time. To analyze cell migration characteristics in time-lapse movies, the MSER-based automatic cell detection was accompanied by a Kalman filter multiobject tracker that efficiently tracked individual cells even in confluent cell populations. This allowed quantitative cell motion analysis resulting in accurate measurements of the migration magnitude and direction of individual cells, as well as characteristics of collective migration of cell groups. Our results demonstrate that MSER accompanied by temporal data association is a powerful tool for accurate and reliable analysis of the dynamic behaviour of cells in phase-contrast image sequences. These techniques tolerate varying and nonoptimal imaging conditions and due to their relatively light computational requirements they should help to resolve problems in computationally demanding and often time-consuming large-scale dynamical analysis of cultured cells.


Subject(s)
Automation, Laboratory/methods , Cell Movement , Microscopy, Phase-Contrast/methods , Time-Lapse Imaging/methods , Image Processing, Computer-Assisted/methods
2.
Int J Sports Med ; 29(9): 738-45, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18213535

ABSTRACT

This study investigated fatigue-induced changes in neuromuscular and stride characteristics during and immediately after the 5-km running time trial. Eighteen well-trained male distance runners performed a maximal 20-m sprint test and maximal voluntary contraction (MVC) in a leg press machine before and immediately after the 5-km running time trial. In all the tests the EMG of five lower limb muscles was measured. The results of the present study showed that muscle fatigue measured in maximal exercises like 20-m sprint and MVC are not related to the fatigue induced changes during the 5-km time trial. The fatigue in the 20-m sprint test was related to the maximal 20-m pretest velocity (r=0.58, p<0.05), but the velocity loss during the 5-km time trial was inversely related to 5-km performance (r= - 0.60, p<0.05) and training volume (r= - 0.58, p<0.05). It was concluded that the fatigue in 5-km running measured pre- and postexercise at maximal effort is more related to sprint performance rather than endurance performance, but the fatigue measured during the 5-km running is related to endurance performance and factors affecting pacing strategy.


Subject(s)
Exercise Tolerance , Fatigue/etiology , Leg , Muscle Contraction , Muscle, Skeletal/physiopathology , Running , Adult , Electromyography , Exercise Test , Fatigue/physiopathology , Humans , Male , Time Factors
3.
Eur J Appl Physiol ; 89(1): 42-52, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12627304

ABSTRACT

The purpose of this study was to investigate effects of concurrent strength and endurance training (SE) (2 plus 2 days a week) versus strength training only (S) (2 days a week) in men [SE: n=11; 38 (5) years, S: n=16; 37 (5) years] over a training period of 21 weeks. The resistance training program addressed both maximal and explosive strength components. EMG, maximal isometric force, 1 RM strength, and rate of force development (RFD) of the leg extensors, muscle cross-sectional area (CSA) of the quadriceps femoris (QF) throughout the lengths of 4/15-12/15 (L(f)) of the femur, muscle fibre proportion and areas of types I, IIa, and IIb of the vastus lateralis (VL), and maximal oxygen uptake (VO(2max)) were evaluated. No changes occurred in strength during the 1-week control period, while after the 21-week training period increases of 21% (p<0.001) and 22% (p<0.001), and of 22% (p<0.001) and 21% (p<0.001) took place in the 1RM load and maximal isometric force in S and SE, respectively. Increases of 26% (p<0.05) and 29% (p<0.001) occurred in the maximum iEMG of the VL in S and SE, respectively. The CSA of the QF increased throughout the length of the QF (from 4/15 to 12/15 L(f)) both in S (p<0.05-0.001) and SE (p<0.01-0.001). The mean fibre areas of types I, IIa and IIb increased after the training both in S (p<0.05 and 0.01) and SE (p<0.05 and p<0.01). S showed an increase in RFD (p<0.01), while no change occurred in SE. The average iEMG of the VL during the first 500 ms of the rapid isometric action increased (p<0.05-0.001) only in S. VO(2max) increased by 18.5% (p<0.001) in SE. The present data do not support the concept of the universal nature of the interference effect in strength development and muscle hypertrophy when strength training is performed concurrently with endurance training, and the training volume is diluted by a longer period of time with a low frequency of training. However, the present results suggest that even the low-frequency concurrent strength and endurance training leads to interference in explosive strength development mediated in part by the limitations of rapid voluntary neural activation of the trained muscles.


Subject(s)
Adaptation, Physiological/physiology , Isometric Contraction/physiology , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Physical Education and Training/methods , Physical Endurance/physiology , Adult , Exercise , Humans , Knee Joint/cytology , Knee Joint/physiology , Male , Muscle Fibers, Skeletal/classification , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/cytology , Oxygen Consumption/physiology , Physical Fitness/physiology , Stress, Mechanical , Volition/physiology
4.
Eur J Appl Physiol ; 84(1-2): 64-8, 2001.
Article in English | MEDLINE | ID: mdl-11394255

ABSTRACT

This study measured heart rate during floor and step aerobic classes at three intensity levels. A group of 20 female occasional exercisers [mean age 33 (SD 8) years, mean body mass index 21 (SD 2) kg.m-2 volunteered to participate in six aerobic classes (three floor classes, three step classes) and in a laboratory test as members of one of two groups according to their prestudy regular participation in aerobics classes. Subjects in group A had participated four or more times a week and those of group B less than twice a week. The characteristics of the groups were as follows: group A, n = 10, mean maximal oxygen uptake (VO2max) 38.7 (SD 3.6) ml.kg-1.min-1, mean maximal heart rate (HRmax) 183 (SD 8) beats.min-1; group B, n = 10, VO2max 36.1 (SD 3.6) ml.kg-1.min-1, HRmax 178 (SD 7) beats.min-1. Each class consisted of a warm-up, a 20 min period of structured aerobic exercise (cardiophase) and a cool-down. The cardiophase was planned and guided as light, (rate of perceived exertion, RPE 11-12), moderate (RPE 13-14) or heavy (RPE 15-17) by an experienced instructor. The mean heart rates during the light classes were 72 (step) and 74 (floor) %HRmax in group A and 75 (step) and 79 (floor) %HRmax in group B; during the moderate classes, 84 (step) and 80 (floor) %HRmax in group A and 82 (step) and 83 (floor) %HRmax in group B, and during the heavy classes 89 (step and floor) %HRmax in group A and 88 (step) and 92 (floor) %HRmax in group B. Differences in heart rate and %HRmax were not statistically significant between the groups. However, differences in heart rate and %HRmax between the intensities (light vs moderate, moderate vs heavy and light vs heavy) were significant within both groups (all, P < 0.01). Based on the results, we conclude that intensity management during the aerobics classes was generally successful regardless of the participants' prior participation in aerobics. However, some individuals who were older and/or had less prior participation tended to exceed the targeted heart rate.


Subject(s)
Exercise/physiology , Heart Rate/physiology , Adult , Dancing , Female , Humans , Middle Aged , Oxygen Consumption/physiology
5.
Scand J Med Sci Sports ; 10(5): 286-91, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11001396

ABSTRACT

This study was carried out to investigate the importance of maximal oxygen uptake (VO2max) and so-called muscle power factors relating to neuromuscular and anaerobic characteristics as determinants of peak horizontal and uphill treadmill running velocity (Vmax). Muscle power factors were measured as peak velocity (VMART) and blood lactate concentration (BlaMART) in a maximal anaerobic running test and as maximal 30-m run velocity (V30m). Seven middle-distance runners, eight triathletes and eight cross-country skiers performed an incremental VO2max-test at horizontal (subscript max0) and 7 degrees uphill (subscript max7) and the MART at 3 degrees uphill on a treadmill and V30m-test on a track. The MART consisted of n x 20-s runs with a 100-s recovery between the runs and the velocity was increased by 0.41 m x s(-1) for each consecutive run until exhaustion. At 0 degrees Vmax was significantly higher but VO2max, ventilation and Bla were significantly lower than at 7 degrees inclination. Vmax0 correlated with VMART (r=0.85, P<0.001), Blamax0 (r=0.49, P<0.05) and V30m (r=0.78, P<0.001) but not with VO2max0. Vmax7 correlated with VO2max7 (r=0.78, P<0.001), VMART (r=0.61, P<0.01) and V30m (r=0.53, P<0.05). VMART correlated with BlaMART (r=0.71, P<0.01) and V30m (r=0.96, P<0.001) but not with VO2max0 or VO2max7. Middle-distance runners had a significantly (P<0.001) higher Vmax0, VMART BlaMART and V30m than triathletes and cross-country skiers, but no significant differences were found between the three groups in VO2max0, VO2max7 or Vmax7. We conclude that so-called muscle power factors, e.g. VMART, V30m and BlaMART, contribute to peak treadmill running performance and especially to horizontal running performance and that VO2max contributes more to uphill than horizontal running performance.


Subject(s)
Muscle, Skeletal/physiology , Physical Endurance/physiology , Running/physiology , Anaerobiosis , Analysis of Variance , Humans , Lactic Acid/blood , Muscle, Skeletal/metabolism , Nervous System Physiological Phenomena , Oxygen Consumption , Statistics, Nonparametric
6.
Int J Sports Med ; 20(8): 516-21, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10606214

ABSTRACT

This study investigated neuromuscular characteristics and fatigue during 10 km running (10 K) performance in well-trained endurance athletes with different distance running capability. Nine high (HC) and ten low (LC) caliber endurance athletes performed the 10 K on a 200 m indoor track, constant velocity lap (CVL, 4.5 m x s(-1)) 5 times during the course of the 10 K and maximal 20 m speed test before (20 m(b)) and after (20 m(a)) the 10 K. Running velocity (V), ground contact times (CT), ground reaction forces (F) and electromyographic activity (EMG) of the leg muscles (vastus lateralis; VL, biceps femoris; BF, gastrocnemius; GA) were measured during 20 m(b), 20 m(a), and CVLs. The 10 K times differed (p<0.001) between HC and LC (36.3+/-1.2 and 39.2+/-2.0 min, respectively) but no differences were observed in 20 m(b) velocity. The 10 K led to significant (p<0.05) decreases in V, F and integrated EMG (IEMG) and increases in CTs of 20 m(a) in both groups. No changes were observed in HC or LC in F and IEMG during the CVLs but HC showed shorter (p<0.05) mean CT of CVLs than LC. A significant correlation (r = -0.56, p<0.05) was observed between the mean CT of CVLs and velocity of 10 K (V10K). Pre-activity of GA in relation to the IEMG of the total contact phase during the CVLs was higher (p<0.05) in HC than LC. The relative IEMGs of VL and GA in the propulsion phase compared to the IEMG of the 20 m(b) were lower (p<0.05) in HC than LC. In conclusion, marked fatigue took place in both HC and LC during the 10 K but the fatigue-induced changes in maximal 20 m run did not differentiate endurance athletes with different V10K. However, a capability to produce force rapidly throughout the 10 K accompanied with optimal preactivation and contact phase activation seem to be important for 10 km running performance in well trained endurance athletes.


Subject(s)
Muscle Fatigue/physiology , Neuromuscular Junction/physiology , Physical Endurance/physiology , Running/physiology , Adult , Biomechanical Phenomena , Electromyography , Humans , Leg/physiology , Male , Muscle, Skeletal/physiology , Physical Fitness
7.
J Appl Physiol (1985) ; 86(5): 1527-33, 1999 May.
Article in English | MEDLINE | ID: mdl-10233114

ABSTRACT

To investigate the effects of simultaneous explosive-strength and endurance training on physical performance characteristics, 10 experimental (E) and 8 control (C) endurance athletes trained for 9 wk. The total training volume was kept the same in both groups, but 32% of training in E and 3% in C was replaced by explosive-type strength training. A 5-km time trial (5K), running economy (RE), maximal 20-m speed (V20 m), and 5-jump (5J) tests were measured on a track. Maximal anaerobic (MART) and aerobic treadmill running tests were used to determine maximal velocity in the MART (VMART) and maximal oxygen uptake (VO2 max). The 5K time, RE, and VMART improved (P < 0.05) in E, but no changes were observed in C. V20 m and 5J increased in E (P < 0.01) and decreased in C (P < 0.05). VO2 max increased in C (P < 0.05), but no changes were observed in E. In the pooled data, the changes in the 5K velocity during 9 wk of training correlated (P < 0.05) with the changes in RE [O2 uptake (r = -0.54)] and VMART (r = 0.55). In conclusion, the present simultaneous explosive-strength and endurance training improved the 5K time in well-trained endurance athletes without changes in their VO2 max. This improvement was due to improved neuromuscular characteristics that were transferred into improved VMART and running economy.


Subject(s)
Muscle, Skeletal/physiology , Physical Fitness/physiology , Running/physiology , Adult , Anaerobic Threshold/physiology , Exercise/physiology , Exercise Test , Humans , Kinetics , Male , Oxygen Consumption/physiology , Physical Endurance/physiology
8.
Med Sci Sports Exerc ; 31(1): 124-30, 1999 Jan.
Article in English | MEDLINE | ID: mdl-9927020

ABSTRACT

PURPOSE: The purpose of this study was to investigate neuromuscular characteristics and muscle power as determinants of distance running performance. METHODS: Seventeen male endurance athletes performed a 5-km time trial (5K) that included three separate constant-velocity 200-m laps during the course and a maximal 20-m speed (V20m) test on an indoor track, and running economy (RE) tests on a treadmill and on the track. Maximal anaerobic (MART) and aerobic running tests on the treadmill were used to determine maximal velocity in the MART (VMART), maximal oxygen uptake (VO2max), peak treadmill performance (VO2max demand), and respiratory compensation threshold (RCT). RESULTS: Velocity in the 5K (V5K) correlated positively (P < 0.05) with VO2max, VO2max demand, RCT, and RE, as well as with V20m and VMART. Regression analysis showed that RCT, track RE, and VMART were the most important determinants of V5K. V5K also correlated (P < 0.05) with contact times (CT) and stride rates in the maximal 20-m run (r = -0.49 and 0.58, respectively), as well as with the mean CT of the constant velocity laps during the 5K (r = -0.50). VMART correlated significantly with peak blood lactate concentration in MART (r = 0.59, P < 0.05), V20m (r = 0.87, P < 0.001), and CT in the maximal 20-m run (r = -0.61, P < 0.01). CONCLUSIONS: We conclude that neuromuscular characteristics and VMART were related to 5-km running performance in well trained endurance athletes. Relationships between VMART and neuromuscular and anaerobic characteristics suggest that VMART can be used as a measure of muscle power in endurance athletes.


Subject(s)
Muscle, Skeletal/physiology , Oxygen Consumption , Physical Fitness/physiology , Running/physiology , Adult , Exercise Test , Humans , Lactic Acid/blood , Male , Neuromuscular Junction/physiology
9.
Int J Sports Med ; 17 Suppl 2: S120-4, 1996 Jul.
Article in English | MEDLINE | ID: mdl-8844276

ABSTRACT

The purpose of this study was to compare two cycle ergometer modifications of the maximal anaerobic running test (MART) with each other and with the MART. Ten male physical education students performed the two maximal anaerobic cycling tests (MACT) in a random order and the MART between the MACTs. Each test consisted of n.20-s exercise bouts with a 100-s recovery period between them. Based on the ACSM equations the oxygen demand of the initial bout in each test equalled 56 ml.kg-1.min-1 and the increase for each consecutive bout was 6 ml.kg-1.min-1. In MACTres the resistance was increased and the pedalling frequency was kept constant (100 rpm) while in MACTfreq the frequency was increased and the resistance was constant (0.077 x body weight). In the MART the velocity of the treadmill was increased and the slope was constant (4 degrees). Blood lactate (BLa) concentration was measured at rest, 40 s after each run and during a 10-min recovery period. Maximal power (Pmax) was similar in the MART, MACTres and MACTfreq (107 +/- 4, 107 +/- 8 and 105 +/- 6 ml.kg-1.min-1, respectively) while significant differences (p < 0.05) were observed in the peak BLa (12.8 +/- 1.3, 15.6 +/- 1.7, and 14.7 +/- 2.1 mM, respectively). BLa was lower in the MACTfreq than in the MACTres until the oxygen demand of 86 ml.kg-1.min-1 and it was higher in both MACTs compared to the MART at each workload. We concluded that the MART can be modified for the bicycle ergometer although metabolic acidosis was greater in bicycle modifications. Further, the comparison of the MACTres and MACTfreq showed that blood lactate accumulation was greater at the higher pedalling frequency.


Subject(s)
Exercise Test , Oxygen/blood , Running/physiology , Acidosis/metabolism , Adult , Exercise Test/instrumentation , Exercise Test/methods , Humans , Lactates/blood , Male
10.
Eur J Appl Physiol Occup Physiol ; 69(2): 119-26, 1994.
Article in English | MEDLINE | ID: mdl-7805665

ABSTRACT

The purpose of this study was to investigate neuromuscular and energy performance characteristics of anaerobic power and capacity and the development of fatigue. Ten endurance and ten sprint athletes performed a new maximal anaerobic running power test (MARP), which consisted of n x 20-s runs on a treadmill with 100-s recovery between the runs. Blood lactate concentration [la-]b was measured after each run to determine submaximal and maximal indices of anaerobic power (P3 mmol.l-1, P5 mmol.l-1, P10 mmol.l-1 and Pmax) which was expressed as the oxygen demand of the runs according to the American College of Sports Medicine equation: the oxygen uptake (ml.kg-1.min-1) = 0.2 x velocity (m.min-1) + 0.9 x slope of treadmill (frac) x velocity (m.min-1) + 3.5. The height of rise of the centre of gravity of the counter movement jumps before (CMJrest) and during (CMJ) the MARP test, as well as the time of force production (tF) and electromyographic (EMG) activity of the leg muscles of CMJ performed after each run were used to describe the neuromuscular performance characteristics. The maximal oxygen uptake (VO2max), anaerobic and aerobic thresholds were determined in the VO2max test, which consisted of n x 3-min runs on the treadmill.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Physical Education and Training , Physical Endurance/physiology , Adult , Anaerobic Threshold/physiology , Anaerobiosis/physiology , Electromyography , Energy Metabolism/physiology , Humans , Lactates/blood , Lactic Acid , Male , Muscle, Skeletal/innervation , Running
11.
Article in English | MEDLINE | ID: mdl-2044534

ABSTRACT

To investigate the effects of a combination of simultaneous strength and endurance training on selected neuromuscular and aerobic performance characteristics seven male cross-country skiers underwent training for a period of 6 weeks. The experimental group trained 6-9 times per week with a programme consisting of 34% explosive type strength training and 66% endurance training during the first 3 weeks of the experiment and 42% and 58% respectively during the last 3 weeks of the experiment. The total volume of training of the control group (eight skiers) was of the same magnitude but consisted of 85% pure endurance training and 15% endurance type strength training. The experimental training regime resulted in specific changes in neuromuscular performance. This was demonstrated by improvements (P less than 0.01) in the maximal heights of rise of the centre of gravity in the squat and countermovement jumps. A significant decrease (P less than 0.05) took place also in the time of rapid isometric force production during experimental training, while no changes occurred in the maximal force of the trained muscles. Aerobic performance characteristics of the experimental group did not change during the experimental training period. No significant changes occurred in neuromuscular or aerobic performance characteristics in the control group. These findings indicated that training-induced improvements in explosive force production may not be fully inhibited by this kind of aerobic training. They also suggested that endurance athletes could undertake explosive type strength training programmes without a concomitant reduction in aerobic capacity, if the overall loading of training were within predefined limits.


Subject(s)
Physical Education and Training , Skiing , Adult , Humans , Male , Oxygen Consumption
SELECTION OF CITATIONS
SEARCH DETAIL
...