Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 35(17-20): 2427-34, 2014.
Article in English | MEDLINE | ID: mdl-25145197

ABSTRACT

The influence of maize silage-manure ratios on energy output and digestate characteristics was studied using batch experiments. The methane production, nutrients availability (N and P) and heavy metals' content were followed in multiflask experiments at digestion times 7, 14, 20, 30 and 60 days. In addition, the available nutrient content in the liquid and solid parts of the digestate was evaluated. Aanaerobic digestion favoured the availability of nutrients to plants, after 61 days 20-26% increase in NH4+ and 0-36% increase in PO4(3-) were found in relation to initial concentrations. Digestion time and maize addition increased the availability of PO4(3-). Inorganic nutrients were found to be mainly available in the liquid part of the digestate, i.e. 80-92% NH4+ and 65-74% PO4(3-). Manure had a positive effect on the methane production rate, whereas maize silage increased the total methane production per unit volatile solids in all treatments.


Subject(s)
Biodegradation, Environmental , Biofuels/analysis , Manure , Silage , Zea mays/metabolism , Anaerobiosis , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Hydrogen-Ion Concentration , Methane/analysis , Methane/metabolism , Phosphates , Refuse Disposal
2.
Water Sci Technol ; 66(7): 1416-23, 2012.
Article in English | MEDLINE | ID: mdl-22864425

ABSTRACT

A protocol was developed for determining the biochemical methane potential (BMP) of plant material using the OxiTop(®) system. NaOH pellets for CO(2) absorption and different pretreatment methods were tested for their influence in the BMP test. The use of NaOH pellets in the headspace of the bottle negatively affected the stability of the test increasing the pH and inhibiting methanization. Sample comminution increased the biodegradability of plant samples. Our results clearly indicate the importance of test conditions during the assessment of anaerobic biodegradability of plant material, considering BMP differences as high as 44% were found. Guidelines and recommendations are given for screening plant material suitable for anaerobic digestion using the OxiTop(®) system.


Subject(s)
Biodegradation, Environmental , Methane/chemistry , Plants , Anaerobiosis
3.
Water Sci Technol ; 60(7): 1829-36, 2009.
Article in English | MEDLINE | ID: mdl-19809146

ABSTRACT

The biodegradability and first-order hydrolysis coefficient of maize silage have been assessed from batch experiments using different types of inoculum and substrate to inocula (S/I) ratios, and from CSTRs working at different hydraulic retention times (HRTs). In the batch experiments, the assessed maximum biodegradability of the maize silage was 68 (+/-2.7)% and 73(+/-2.9)% while the first order hydrolysis was 0.26 (+/-0.01) and 0.27(+/-0.02) d(-1), using granular and a mixture of granular and suspended inoculum, respectively. In the CSTR experiment biodegradability ranged from 41-65% depending on the HRT applied whereas the calculated first order hydrolysis coefficient was 0.32 d(-1). It is concluded that batch experiments can be used to assess first order hydrolysis constants and biodegradability provided that a well balanced inoculum is guaranteed. Further, it is shown that CSTR reactors digesting maize silage and operating at HRTs as low as 20 days can attain 88% of maximum biodegradability as long as pH fluctuations are minimized. 2 mmol NaHCO3 per gram maize silage was calculated to suffice for the purpose.


Subject(s)
Silage/analysis , Zea mays/chemistry , Biodegradation, Environmental , Hydrolysis , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...