Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 300(6): 107299, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641063

ABSTRACT

ABCG2, a member of the ABC transporter superfamily, is overexpressed in many human tumors and has long been studied for its ability to export a variety of chemotherapeutic agents, thereby conferring a multidrug resistance (MDR) phenotype. However, several studies have shown that ABCG2 can also confer an MDR-independent survival advantage to tumor cells exposed to stress. While investigating the mechanism by which ABCG2 enhances survival in stressful milieus, we have identified a physical and functional interaction between ABCG2 and SLC1A5, a member of the solute transporter superfamily and the primary transporter of glutamine in cancer cells. This interaction was accompanied by increased glutamine uptake, increased glutaminolysis, and rewired cellular metabolism, as evidenced by an increase in key metabolic enzymes and alteration of glutamine-dependent metabolic pathways. Specifically, we observed an increase in glutamine metabolites shuttled to the TCA cycle, and an increase in the synthesis of glutathione, accompanied by a decrease in basal levels of reactive oxygen species and a marked increase in cell survival in the face of oxidative stress. Notably, the knockdown of SLC1A5 or depletion of exogenous glutamine diminished ABCG2-enhanced autophagy flux, further implicating this solute transporter in ABCG2-mediated cell survival. This is, to our knowledge, the first report of a functionally significant physical interaction between members of the two major transporter superfamilies. Moreover, these observations may underlie the protective role of ABCG2 in cancer cells under duress and suggest a novel role for ABCG2 in the regulation of metabolism in normal and diseased states.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Cell Survival , Glutamine , Minor Histocompatibility Antigens , Neoplasm Proteins , Oxidative Stress , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Glutamine/metabolism , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/genetics , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 1/genetics , Cell Line, Tumor , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Reactive Oxygen Species/metabolism , Amino Acid Transport System ASC
2.
Autophagy ; 12(5): 737-51, 2016 05 03.
Article in English | MEDLINE | ID: mdl-26983466

ABSTRACT

The ABC drug transporters, including ABCG2, are well known for their ability to efflux a wide spectrum of chemotherapeutic agents, thereby conferring a multidrug-resistant phenotype. However, studies over the past several years suggest that the ABC transporters may play additional role(s) in cell survival in the face of stress inducers that are not ABCG2 substrates (i.e., nutrient deprivation, ionizing radiation, rapamycin). The mechanism by which this occurs is largely unknown. In the present study, using several cancer cell lines and their ABCG2-overexpressing sublines, we show that cells overexpressing ABCG2 were more resistant to these stressors. This resistance was associated with an elevated level of autophagy flux, as measured by a higher rate of SQSTM1/p62 degradation and greater accumulation of LC3-II when compared to parental cells. Knockdown of ABCG2 reduced autophagic activity in resistant cells to a level similar to that observed in parental cells, confirming that the enhanced autophagy was ABCG2-dependent. Moreover, using cell viability, apoptosis, and clonogenic assays, we demonstrated that the ABCG2-expressing cells were more resistant to amino acid starvation and radiation-induced cell death. Importantly, knockdown of the critical autophagy factors ATG5 and ATG7 greatly reduced cell survival, verifying that enhanced autophagy was critical for this effect. Taken together, these data indicate that autophagy induced by various stressors is enhanced/accelerated in the presence of ABCG2, resulting in delayed cell death and enhanced cell survival. This defines a new role for this transporter, one with potential clinical significance.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Neoplasm Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/drug effects , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Neoplasm Proteins/genetics , RNA, Small Interfering/pharmacology
3.
J Biol Chem ; 290(24): 14986-5003, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-25818199

ABSTRACT

We have previously reported that the methylxanthine caffeine increases expression of the splicing factor SRSF2, the levels of which are normally controlled by a negative autoregulatory loop. In the present study we have investigated the mechanisms by which methylxanthines induce this aberrant overexpression. RT-PCR analyses suggested little impact of caffeine on SRSF2 total mRNA levels. Instead, caffeine induced changes in the levels of SRSF2 3' UTR splice variants. Although some of these variants were substrates for nonsense-medicated decay (NMD), and could potentially have been stabilized by caffeine-mediated inhibition of NMD, down-regulation of NMD by a genetic approach was not sufficient to reproduce the phenotype. Furthermore, cell-based assays demonstrated that some of the caffeine-induced variants were intrinsically more efficiently translated than others; the addition of caffeine increased the translational efficiency of most SRSF2 transcripts. MicroRNA array analyses revealed a significant caffeine-mediated decrease in the expression of two SRSF2-targeting miRs, both of which were shown to repress translation of specific SRSF2 splice variants. These data support a complex model whereby caffeine down-regulates SRSF2-targeting microRNAs, leading to an increase in SRSF2 translation, which in turn induces SRSF2 splicing. SRSF2 splice variants are then stabilized by caffeine-mediated NMD inhibition, breaking the normal negative feedback loop and allowing the aberrant increase in SRSF2 protein levels. These findings highlight the complexity of SRSF2 gene regulation, and suggest ways in which SRSF2 expression may be dysregulated in disease.


Subject(s)
Alternative Splicing , Caffeine/pharmacology , Gene Expression Regulation/drug effects , Nuclear Proteins/genetics , Ribonucleoproteins/genetics , Base Sequence , DNA Primers , HeLa Cells , Humans , Real-Time Polymerase Chain Reaction , Serine-Arginine Splicing Factors
4.
Mol Pharmacol ; 81(3): 328-37, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22113078

ABSTRACT

ABCG2 is an ATP-binding-cassette (ABC) transporter that confers multidrug resistance (MDR) to tumor cells by extruding a broad variety of chemotherapeutic agents, ultimately leading to failure of cancer therapy. Thus, the down-regulation of ABCG2 expression and/or function has been proposed as part of a regimen to improve cancer therapeutic efficacy. In this study, we found that a group of xanthines including caffeine, theophylline, and dyphylline can dramatically decrease ABCG2 protein in cells that have either moderate (BeWo, a placental choriocarcinoma cell line) or high (MCF-7/MX100, a breast cancer drug-resistant cell subline) levels of ABCG2 expression. This down-regulation is time-dependent, dose-dependent, and reversible. Using lysosomal inhibitors, we found that xanthines decreased ABCG2 by inducing its rapid internalization and lysosome-mediated degradation. As a consequence, caffeine treatment significantly increased the retention of an established ABCG2 substrate in MCF-7/MX100 cells but not in parental MCF-7 cells and sensitized the MDR cells to the chemotherapeutic agent mitoxantrone (MX); combination treatment with MX and caffeine decreased the IC(50) of MX ~10-fold and induced a greater degree of apoptotic cell death than MX treatment alone. Taken together, our results describe a novel function for this large class of therapeutically relevant compounds and suggest that a subset of xanthines could be developed as combination therapy to improve the efficacy of anticancer drugs that are ABCG2 substrates.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Down-Regulation/drug effects , Neoplasm Proteins/metabolism , Xanthines/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Cell Line, Tumor , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Humans , Lysosomes/metabolism
5.
Mol Cell Biol ; 28(2): 883-95, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18025108

ABSTRACT

Alternative splicing of pre-mRNA contributes significantly to human proteomic complexity, playing a key role in development, gene expression and, when aberrant, human disease onset. Many of the factors involved in alternative splicing have been identified, but little is known about their regulation. Here we report that caffeine regulates alternative splicing of a subset of cancer-associated genes, including the tumor suppressor KLF6. This regulation is at the level of splice site selection, occurs rapidly and reversibly, and is concentration dependent. We have recapitulated caffeine-induced alternative splicing of KLF6 using a cell-based minigene assay and identified a "caffeine response element" within the KLF6 intronic sequence. Significantly, a chimeric minigene splicing assay demonstrated that this caffeine response element is functional in a heterologous context; similar elements exist within close proximity to caffeine-regulated exons of other genes in the subset. Furthermore, the SR splicing factor, SC35, was shown to be required for induction of the alternatively spliced KLF6 transcript. Importantly, SC35 is markedly induced by caffeine, and overexpression of SC35 is sufficient to mimic the effect of caffeine on KLF6 alternative splicing. Taken together, our data implicate SC35 as a key player in caffeine-mediated splicing regulation. This novel effect of caffeine provides a valuable tool for dissecting the regulation of alternative splicing of a large gene subset and may have implications with respect to splice variants associated with disease states.


Subject(s)
Alternative Splicing/drug effects , Alternative Splicing/genetics , Caffeine/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Neoplasm Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Animals , Base Sequence , Cell Line, Tumor , Exons/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Kruppel-Like Factor 6 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Molecular Sequence Data , Neoplasm Proteins/genetics , Oligonucleotide Array Sequence Analysis , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Serine-Arginine Splicing Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...