Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Signal ; 12(568)2019 02 12.
Article in English | MEDLINE | ID: mdl-30755478

ABSTRACT

Adoptive transfer of T cells that express a chimeric antigen receptor (CAR) is an approved immunotherapy that may be curative for some hematological cancers. To better understand the therapeutic mechanism of action, we systematically analyzed CAR signaling in human primary T cells by mass spectrometry. When we compared the interactomes and the signaling pathways activated by distinct CAR-T cells that shared the same antigen-binding domain but differed in their intracellular domains and their in vivo antitumor efficacy, we found that only second-generation CARs induced the expression of a constitutively phosphorylated form of CD3ζ that resembled the endogenous species. This phenomenon was independent of the choice of costimulatory domains, or the hinge/transmembrane region. Rather, it was dependent on the size of the intracellular domains. Moreover, the second-generation design was also associated with stronger phosphorylation of downstream secondary messengers, as evidenced by global phosphoproteome analysis. These results suggest that second-generation CARs can activate additional sources of CD3ζ signaling, and this may contribute to more intense signaling and superior antitumor efficacy that they display compared to third-generation CARs. Moreover, our results provide a deeper understanding of how CARs interact physically and/or functionally with endogenous T cell molecules, which will inform the development of novel optimized immune receptors.


Subject(s)
Immunotherapy, Adoptive/methods , Neoplasms/therapy , Proteomics/methods , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/metabolism , Xenograft Model Antitumor Assays , Animals , Binding Sites/immunology , Cell Line, Tumor , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplasms/immunology , Neoplasms/pathology , Protein Binding/immunology , Proteome/immunology , Proteome/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , T-Lymphocytes/transplantation
2.
Blood Adv ; 2(21): 3012-3024, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30425065

ABSTRACT

Although the treatment paradigm for chronic lymphocytic leukemia (CLL) is rapidly changing, the disease remains incurable, except with allogeneic bone marrow transplantation, and resistance, relapsed disease, and partial responses persist as significant challenges. Recent studies have uncovered roles for epigenetic modification in the regulation of mechanisms contributing to malignant progression of CLL B cells. However, the extent to which epigenetic modifiers can be targeted for therapeutic benefit in CLL patients remains poorly explored. We report for the first time that expression of epigenetic modifier histone deacetylase 6 (HDAC6) is upregulated in CLL patient samples, cell lines, and euTCL1 transgenic mouse models compared with HDAC6 in normal controls. Genetic silencing of HDAC6 conferred survival benefit in euTCL1 mice. Administration of isoform-specific HDAC6 inhibitor ACY738 in the euTCL1 aging and adoptive transfer models deterred proliferation of CLL B cells, delayed disease onset via disruption of B-cell receptor signaling, and sensitized CLL B cells to apoptosis. Furthermore, coadministration of ACY738 and ibrutinib displayed synergistic cell kill against CLL cell lines and improved overall survival compared with either single agent in vivo. These results demonstrate for the first time the therapeutic efficacy of selective HDAC6 inhibition in preclinical CLL models and suggest a rationale for the clinical development of HDAC6 inhibitors for CLL treatment, either alone or in combination with Bruton tyrosine kinase inhibition.


Subject(s)
Gene Silencing , Histone Deacetylase 6/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Adenine/analogs & derivatives , Animals , Antigens, CD19/metabolism , Apoptosis/drug effects , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Cell Proliferation/drug effects , Disease Models, Animal , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/genetics , Humans , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Piperidines , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins/metabolism , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...