Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(20): 206101, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38829064

ABSTRACT

The dielectric response of liquids reflects both reorientation of single molecular dipoles and collective modes, i.e., dipolar cross-correlations. A recent theory predicts the latter to produce an additional slow peak in the dielectric loss spectrum. Following this idea we argue that in supercooled liquids the high-frequency power law exponent of the dielectric loss ß should be correlated with the degree of dipolar order, i.e., the Kirkwood correlation factor g_{K}. This notion is confirmed for 25 supercooled liquids. While our findings support recent theoretical work the results are shown to violate the earlier Kivelson-Madden theory.

2.
J Chem Phys ; 159(5)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37526166

ABSTRACT

We investigate the reorientation dynamics of four octanol isomers with very different characteristics regarding the formation of hydrogen-bonded structures by means of photon-correlation spectroscopy (PCS) and broadband dielectric spectroscopy. PCS is largely insensitive to orientational cross-correlations and straightforwardly probes the α-process dynamics, thus allowing us to disentangle the complex dielectric relaxation spectra. The analysis reveals an additional dielectric relaxation contribution on time scales between the structural α-process and the Debye process. In line with nuclear magnetic resonance results from the literature and recent findings from rheology experiments, we attribute this intermediate contribution to the dielectric signature of the O-H bond reorientation. Due to being incorporated into hydrogen-bonded suprastructures, the O-H bond dynamically decouples from the rest of the molecule. The relative relaxation strength of the resulting intermediate contribution depends on the respective position of the hydroxy group within the molecule and seems to vanish at sufficiently high temperatures, i.e., exactly when the overall tendency to form hydrogen bonded structures decreases. Furthermore, the fact that different octanol isomers share the same dipole density allows us to perform an in-depth analysis of how dipolar cross-correlations appear in dielectric loss spectra. We find that dipolar cross-correlations are not solely manifested by the presence of the slow Debye process but also scale the relaxation strength of the self-correlation contribution depending on the Kirkwood factor.

3.
Phys Chem Chem Phys ; 25(24): 16380-16388, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37292034

ABSTRACT

The shape of the structural relaxation peak in the susceptibility spectra of liquids is of great interest, as it promises to provide information about the distribution of molecular mobilities and dynamic heterogeneity. However, recent studies suggest a generic shape of this peak near the glass transition temperature irrespective of the liquid under investigation, which somehow reduces the information contained in the peak shape. By contrast, at higher temperatures, say, around the melting point, the situation is different and the peak shape varies strongly between different liquids. In this study, we investigate molecules with a ring-tail structure and address the question how intramolecular dynamics influences the peak shape at these temperatures. Using depolarized light scattering and dielectric spectroscopy, we observe a bimodal relaxation, which we attribute to the fact that the reorientation of the ring group to some extent decouples from the rest of the molecule. This shows that the relaxation spectra are sensitive to details of the molecular motions at high temperatures, whereas in the supercooled state this microscopic information seems to give way to a generic shape, probably due to the onset of cooperativity which extends across different intramolecular moieties.

4.
Soft Matter ; 19(7): 1418-1428, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36723269

ABSTRACT

Ionogels are gels containing ions, often an ionic liquid (IL), and a gelling agent. They are promising candidates for applications including batteries, photovoltaics or fuel cells due to their chemical stability and high ionic conductivity. In this work we report on a thermo-irreversible ionic gel prepared from a mixture of the ionic liquid 1-butyl-3-methylimidazolium ([BMIM]) dicyanamide ([DCA]), water and gelatin, which combines the advantages of an ionic liquid with the low cost of gelatin. We use (i) dielectric spectroscopy to monitor the ion transport, (ii) dynamic light scattering techniques to access the reorientational motions of the ions, as well as fluctuations of the gel matrix, and (iii) rheology to determine the shear response from above room temperature down to the glass transition. In this way, we are able to connect the microscopic ion dynamics with the meso- and macroscopic behavior of the gelatin matrix. We show, by comparing our results to those for a IL-water mixture from a previous study, that although some weak additional slow relaxation modes are present in the gel, the overall ion dynamics is hardly changed by the presence of gelatin. The macroscopic mechanical response, as probed by rheology, is however dominated by the gel matrix. This behaviour can be highly useful e.g. in battery gel electrolytes which prevent electrolyte leakage and combine mechanical rigidity and flexibility.

5.
J Chem Phys ; 157(24): 244501, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36586992

ABSTRACT

The intensity of light scattered by liquids has been studied for over a century since the valuable microscopic information about the molecules can be obtained, such as the anisotropy of the molecular polarizability tensor or preferred orientations of neighboring molecules. However, in modern dynamic light scattering experiments, the scattering intensity is usually disregarded, unlike in dielectric spectroscopy, which can be considered as a complementary experimental method, where the dielectric strength is routinely evaluated. The reason lies partly on the fact that the exact form of the equations relating the macroscopically measured light scattering intensity to the microscopic properties of the molecules is debated in the literature. Therefore, as a first step, we compare anisotropy parameters from the literature, calculated from light scattering intensities using different equations, with quantum chemical calculations for over 150 medium-sized molecules. This allows us to identify a consistent form of equations. In a second part, we turn to the depolarized light scattering spectra of 13 van der Waals liquids and some mixtures thereof, recorded with a combination of Tandem-Fabry-Perót and Raman spectroscopies, giving direct access to the reorientational dynamics of the molecules. We discuss how the strength of the structural α-relaxation is connected to the anisotropy parameter, what implication this has for the shape of the α-relaxation, how the components of a mixture-also for the case of ionic liquids-can be identified in this way, and how orientational correlation parameters can be extracted. Additionally, we point out for the example of n-alkanes that for highly flexible molecules, the reorientational motion might not be the decisive source of the depolarized scattered light. We also show that light scattering might serve as a sensitive tool to check the accuracy of a conformer ensemble obtained by quantum chemical calculations.

6.
J Phys Chem B ; 126(33): 6324-6330, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35973008

ABSTRACT

Protein hydration shell dynamics plays a pivotal role in biochemical processes such as protein folding, enzyme function, molecular recognition and interaction with biological membranes. Thus, it is crucial to understand the mobility of the solvation shell at the surface of biomolecules. Triplet state solvation dynamics can reveal the slow dynamics of the solvation shell. This is done in the present work without adding separate dye molecules but instead by using a phosphorescent subgroup of the biomolecule itself. In particular, we study a small heptapeptide in a glycerol-water mixture under cryoconservation conditions so that the system can be supercooled without crystallization. We find a significant slowing of molecules in the solvation shell in the millisecond range compared to the bulk. This opens up the possibility to unravel the nature of relaxation processes in the solvation shell usually overlapping at room temperature.


Subject(s)
Protein Folding , Water , Water/chemistry
7.
Phys Rev E ; 105(2-1): 024108, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35291170

ABSTRACT

The theory developed in an accompanying paper [Déjardin, Phys. Rev. E 105, 024109 (2022)10.1103/PhysRevE.105.024109] is used to compute the Kirkwood correlation factor of simple polar fluids of different nature. From this calculation, the theoretical static permittivity is readily obtained, which is compared with experimental values. This is accomplished by fitting only one parameter accounting for induction or dispersion forces and torques, which is necessarily connected with the individual molecular polarizability but not explicitly related to the physical properties due to the nonadditivity of such energies. Excellent agreement between theoretical and experimental static permittivities is obtained over a very broad temperature range for a number of associated and nonassociated liquids. Finally, limitations of the present theory are given.

8.
J Chem Phys ; 155(17): 174501, 2021 Nov 07.
Article in English | MEDLINE | ID: mdl-34742203

ABSTRACT

Nanoscale water clusters in an ionic liquid matrix, also called "water pockets," were previously found in some mixtures of water with ionic liquids containing hydrophilic anions. However, in these systems, at least partial crystallization occurs upon supercooling. In this work, we show for mixtures of 1-butyl-3-methylimidazolium dicyanamide with water that none of the components crystallizes up to a water content of 72 mol. %. The dynamics of the ionic liquid matrix is monitored from above room temperature down to the glass transition by combining depolarized dynamic light scattering with broadband dielectric and nuclear magnetic resonance spectroscopy, revealing that the matrix behaves like a common glass former and stays amorphous in the whole temperature range. Moreover, we demonstrate by a combination of Raman spectroscopy, small angle neutron scattering, and molecular dynamics simulation that, indeed, nanoscale water clusters exist in this mixture.

9.
Phys Chem Chem Phys ; 23(26): 14260-14275, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34159979

ABSTRACT

Molecular dynamics of ionic liquids in an electric field can be decomposed into contributions from translational motions of ions, rotational motions of permanent dipoles and - in the case of ions equipped with long alkyl-chains - motions of ionic aggregates. The discrimination of these contributions in the dielectric spectrum is quite involved, resulting in numerous controversies in the literature. Here, we use dielectric spectroscopy at ambient and elevated pressures of up to 550 MPa to monitor the changes of the observed processes in five supercooled ionic liquids with octyl-chains independent of pressure and temperature. In most of the ionic liquids under investigation two dynamical processes are observed, one of them is identified as the ion hopping process, which we describe by the MIGRATION model. It turns out that this process is closely connected to the glass transition step as measured by differential scanning calorimetry. Concerning the second process, we rule out motions of aggregated ions to be its origin by comparison of our results with X-ray scattering literature data at elevated pressure. Instead, we tentatively ascribe it to dipolar reorientations and show that the dielectric strength of this slow process decreases as a function of increasing relaxation time, i.e. for decreasing temperatures and increasing pressures. We compare this behavior with literature data of other ion conducting systems and discuss its microscopic origin.

10.
Phys Chem Chem Phys ; 23(28): 15020-15029, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34190269

ABSTRACT

Characterizing the segmental dynamics of proteins, and intrinsically disordered proteins in particular, is a challenge in biophysics. In this study, by combining data from broadband dielectric spectroscopy (BDS) and both depolarized (DDLS) and polarized (PDLS) dynamic light scattering, we were able to determine the dynamics of a small peptide [ε-poly(lysine)] in water solutions in two different conformations (pure ß-sheet at pH = 10 and a more disordered conformation at pH = 7). We found that the segmental (α-) relaxation, as probed by DDLS, is faster in the disordered state than in the folded conformation. The water dynamics, as detected by BDS, is also faster in the disordered state. In addition, the combination of BDS and DDLS results allows us to confirm the molecular origin of water-related processes observed by BDS. Finally, we discuss the origin of two slow processes (A and B processes) detected by DDLS and PDLS in both conformations and usually observed in other types of water solutions. For fully homogeneous ε-PLL solutions at pH = 10, the A-DLS process is assigned to the diffusion of individual ß-sheets. The combination of both techniques opens a route for understanding the dynamics of peptides and other biological solutions.


Subject(s)
Peptides/chemistry , Dielectric Spectroscopy , Dynamic Light Scattering , Electromagnetic Fields , Hydrogen-Ion Concentration , Intrinsically Disordered Proteins/chemistry , Light , Models, Chemical , Protein Conformation/drug effects , Temperature , Water
11.
J Phys Chem Lett ; 12(14): 3685-3690, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33829796

ABSTRACT

One of the unsolved problems of dynamics in supercooled liquids are the differences in spectral shape of the structural relaxation observed among different methods and substances, and a possible generic line shape has long been debated. We show that the light scattering spectra of very different systems, e.g., hydrogen bonding, van der Waals liquids, and ionic systems, almost perfectly superimpose and show a generic line shape of the structural relaxation, following ∝ ω-1/2 at high frequencies. In dielectric spectra the generic behavior is recovered only for systems with low dipole moment, while in strongly dipolar liquids additional cross-correlation contributions mask the generic structural relaxation.

12.
Phys Rev E ; 102(1-1): 010606, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32794972

ABSTRACT

The nonexponential shape of the α process observed in supercooled liquids is considered as one of the hallmarks of glassy dynamics and has thus been under study for decades, but is still poorly understood. For a polar van der Waals liquid, we show here-in line with a recent theory-that dipole-dipole correlations give rise to an additional process in the dielectric spectrum slightly slower than the α relaxation, which renders the resulting combined peak narrower than observed by other experimental techniques. This is reminiscent of the Debye-process found in monohydroxy alcohols. The additional peak can be suppressed by weakening the dipole-dipole interaction via dilution with a nonpolar solvent.

13.
Phys Chem Chem Phys ; 22(20): 11644-11651, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32406438

ABSTRACT

We suggest a way to disentangle self- from cross-correlation contributions in the dielectric spectra of glycerol. Recently it was demonstrated for monohydroxy alcohols that a detailed comparison of the dynamic susceptibilities of photon correlation and broadband dielectric spectroscopy allows to unambiguously disentangle a collective relaxation mode known as the Debye process, which arises due to supramolecular structures, and the α-relaxation, which proves to be identical in both methods. In the present paper, we apply the same idea and analysis to the paradigmatic glass former glycerol. For that purpose we present new light scattering data from photon correlation spectroscopy measurements and combine these with literature data to obtain a data set covering a dynamic range from 10-4-1013 Hz. Then we apply the above mentioned analysis by comparing this data set with a corresponding set of broadband dielectric data. Our finding is that even in a polyalcohol self- and cross-correlation contributions can approximately be disentangled in that way and that the emerging picture is very similar to that in monohydroxy alcohols. This is further supported by comparing the data with fast field cycling NMR measurements and dynamic shear relaxation data from the literature, and it turns out that, within the described approach, the α-process appears very similar in all methods, while the pronounced differences observed in the spectral density are due to a different expression of the slow collective relaxational contribution. In the dielectric spectra the strength of this peak is reasonably well estimated by the Kirkwood correlation factor, which supports the view that it arises due to dynamic cross-correlations, which were previously often assumed to be negligible in dielectric measurements.

14.
J Phys Chem B ; 123(51): 10959-10966, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31755718

ABSTRACT

Relaxation behavior of monohydroxy alcohols (monoalcohols) in broadband dielectric spectroscopy (BDS) is usually dominated by the Debye process. This process is regarded as a signature of the dynamics of transient supramolecular structures formed by H-bonding. In phenyl-propanols, the steric hindrance of the phenyl ring is assumed to influence chain formation and thereby to decrease or even suppress the intensity of the Debye process. In the present paper, we study this effect in a systematic series of structural isomers of phenyl-1-propanol in comparison with 1-propanol. It turns out that by combining BDS, photon correlation spectroscopy (PCS), and calorimetry, the dynamics of supramolecular structures can be uncovered. While light scattering spectra show the same spectral shape of the main relaxation for all investigated monoalcohols, the dielectric spectra differ in the Debye contribution. Thus, it becomes possible for the first time to unambiguously disentangle both relaxation modes in the dielectric spectra. It turns out that the Debye relaxation becomes weaker, the closer the position of the phenyl ring is to the hydroxy group, in accordance with the analysis of the Kirkwood/Fröhlich correlation factor. Even in 1-phenyl-1-propanol, which has the phenyl group attached at the closest position to the hydroxy group, we can separate a Debye contribution in the dielectric spectrum. From this, we conclude that structure formation through hydrogen bonds is not generally suppressed by the increased steric hindrance of the phenyl ring, but rather an equilibrium of ring and chain-like structures is shifted toward ring-like shapes on shifting the phenyl ring closer to the hydroxy group. Moreover, the shape of the α-relaxation, as monitored by PCS, is the same as the self-part of the correlation in BDS, remains unaffected by the degree of hydrogen bonding and is the same among the investigated alcohols.

15.
Phys Chem Chem Phys ; 21(44): 24778-24786, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31686062

ABSTRACT

The dielectric Debye relaxation in monohydroxy alcohols has been subject of long-standing scientific interest and is presently believed to arise from the relaxation of transiently H-bonded supramolecular structures. Therefore, its manifestation in a measurement with a local dielectric probe might be expected to be different from the standard macroscopic dielectric experiment. In this work we present such local dielectric measurements obtained by triplet state solvation dynamics (TSD) and compare the results with macroscopic dielectric and light scattering data. In particular, with data from an improved TSD setup, a detailed quantitative comparison reveals that the Debye process does not significantly contribute to the local Stokes shift response function, while α- and ß-relaxations are clearly resolved. Furthermore, this comparison reveals that the structural relaxation has almost identical time constants and shape parameters in all three measurement techniques. Altogether our findings support the notion that the transiently bound chain structures lead to a strong cross-correlation contribution in macroscopic dielectric experiments, to which both light scattering and TSD are insensitive, the latter due to its local character and the former due to the molecular optical anisotropy being largely independent of the OH bonded suprastructures.

16.
J Phys Chem Lett ; 10(9): 2130-2134, 2019 May 02.
Article in English | MEDLINE | ID: mdl-30978281

ABSTRACT

Nanoscale structures in ionic liquids (ILs) are usually identified by X-ray or neutron scattering techniques and occur when the alkyl chains of the cations are long enough to show the tendency to segregate into apolar domains. In search of dynamic evidence for these nanostructures, different experimental techniques recently reported bimodal dynamic susceptibility spectra. In all cases, the faster process observed was ascribed to the structural α-relaxation and the slower one to the relaxation of long-lived aggregates. By contrast, we show by depolarized dynamic light scattering (DDLS) experiments on a systematic series of imidazolium-based ILs that the dynamics of the cation and anion are clearly separated for long alkyl chains. Therefore, the observation of a bimodal behavior is not related to any nanostructure but reflects the two-component nature of ILs. Thus, a consistent picture is obtained across different experimental methods, like dielectric and shear mechanical relaxation. Finally, the actual dynamic signature of nanostructures is identified for the first time as a weak feature in some of the DDLS spectra at even lower frequencies.

17.
Phys Rev Lett ; 121(3): 035501, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30085796

ABSTRACT

The slow Debye-like relaxation in the dielectric spectra of monohydroxy alcohols is a matter of long-standing debate. In the present Letter, we probe reorientational dynamics of 5-methyl-2-hexanol with dielectric spectroscopy and depolarized dynamic light scattering (DDLS) in the supercooled regime. While in a previous study of a primary alcohol no indication of the Debye peak in the DDLS spectra was found, we now for the first time report clear evidence of a Debye contribution in a monoalcohol in DDLS. A quantitative comparison between the dielectric and DDLS manifestation of the Debye peak reveals that while the dielectric Debye process represents fluctuations in the end-to-end vector dipole moment of the transient chains, its occurrence in DDLS shows a more local signature and is related to residual correlations that occur due to a slight anisotropy of the α relaxation caused by the chain formation.

18.
J Phys Chem B ; 121(37): 8847-8853, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28872311

ABSTRACT

We revisit the reorientational dynamics of 1-propanol as a prototype of a monohydroxy alcohol and H-bonding system by dielectric spectroscopy (DS) and depolarized dynamic light scattering (DDLS). In particular, we address the question of whether the Debye relaxation, which is seen as a dominant process in DS, is visible in light scattering and discuss how the Johari-Goldstein (JG) ß-process, which is also a prominent feature of the dielectric spectrum, appears in photon correlation spectroscopy. For that purpose we performed depolarized photon correlation experiments with an improved setup and performed additional time domain dielectric experiments which gives us the possibility to compare dielectric and light scattering data in a broad temperature range. It turns out that the improved setup allows to unambiguously identify the JG ß-process, which shows almost identical properties in DDLS as in the dielectric spectra, but a Debye relaxation is not present in the DDLS data and can be excluded down to a level of 2.5% of the α-process amplitude.

19.
J Cardiothorac Surg ; 2: 37, 2007 Sep 18.
Article in English | MEDLINE | ID: mdl-17877828

ABSTRACT

BACKGROUND: Volatile breath biomarkers provide a non-invasive window to observe physiological and pathological processes in the body. This study was intended to assess the impact of heart surgery with extracorporeal circulation (ECC) onto breath biomarker profiles. Special attention was attributed to oxidative or metabolic stress during surgery and extracorporeal circulation, which can cause organ damage and poor outcome. METHODS: 24 patients undergoing cardiac surgery with extracorporeal circulation were enrolled into this observational study. Alveolar breath samples (10 mL) were taken after induction of anesthesia, after sternotomy, 5 min after end of ECC, and 30, 60, 90, 120 and 150 min after end of surgery. Alveolar gas samples were withdrawn from the circuit under visual control of expired CO2. Inspiratory samples were taken near the ventilator inlet. Volatile substances in breath were preconcentrated by means of solid phase micro extraction, separated by gas chromatography, detected and identified by mass spectrometry. RESULTS: Mean exhaled concentrations of acetone, pentane and isoprene determined in this study were in accordance with results from the literature. Exhaled substance concentrations showed considerable inter-individual variation, and inspired pentane concentrations sometimes had the same order of magnitude than expired values. This is the reason why, concentrations were normalized by the values measured 120 min after surgery. Exhaled acetone concentrations increased slightly after sternotomy and markedly after end of ECC. Exhaled acetone concentrations exhibited positive correlation to serum C-reactive protein concentrations and to serum troponine-T concentrations. Exhaled pentane concentrations increased markedly after sternotomy and dropped below initial values after ECC. Breath pentane concentrations showed correlations with serum creatinine (CK) levels. Patients with an elevated CK-MB (myocardial&brain)/CK ratio had also high concentrations of pentane in exhaled air. Exhaled isoprene concentrations raised significantly after sternotomy and decreased to initial levels at 30 min after end of ECC. Exhaled isoprene concentrations showed a correlation with cardiac output. CONCLUSION: Oxidative and metabolic stress during cardiac surgery could be assessed continuously and non-invasively by means of breath analysis. Correlations between breath acetone profiles and clinical conditions underline the potential of breath biomarker monitoring for diagnostics and timely initiation of life saving therapy.


Subject(s)
Cardiac Surgical Procedures , Extracorporeal Circulation , Monitoring, Intraoperative/methods , Oxidative Stress , Stress, Physiological , Acetone/analysis , Acetone/metabolism , Aged , Aged, 80 and over , Biomarkers/analysis , Biomarkers/metabolism , Breath Tests/methods , Butadienes/analysis , Butadienes/metabolism , Chromatography, Gas , Female , Hemiterpenes/analysis , Hemiterpenes/metabolism , Humans , Male , Mass Spectrometry , Middle Aged , Pentanes/analysis , Pentanes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...