Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2402637, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881529

ABSTRACT

As the rise of nonfullerene acceptors (NFA) has allowed lab-scale organic solar cells (OSC) to reach 20% efficiency, translating these devices into roll-to-roll compatible fabrication still poses many challenges for researchers. Among these are the use of green solvent solubility for large-scale manufacture, roll-to-roll compatible fabrication, and, not least, information on charge carrier dynamics in each upscaling step, to further understand the gap in performance. In this work, the reproducibility of champion devices using slot-die coating with 14% power conversion efficiency (PCE) is demonstrated, under the condition that the optimal thickness is maintained. It is further shown that for the donor:acceptor (D:A) blend PM6:Y12, the processing solvent has a more significant impact on charge carrier dynamics compared to the deposition technique. It is found that the devices processed with o-xylene feature a 40% decrease in the bimolecular recombination coefficient compared to those processed with CB, as well as a 70% increase in effective mobility. Finally, it is highlighted that blade-coating yields devices with similar carrier dynamics to slot-die coating, making it the optimal choice for lab-scale optimization with no significant loss in translation toward up-scale.

2.
Adv Mater ; 35(49): e2306655, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37670609

ABSTRACT

A bulk-heterojunction (BHJ) blend is commonly used as the photoactive layer in organic photodetectors (OPDs) to utilize the donor (D)/acceptor (A) interfacial energetic offset for exciton dissociation. However, this strategy often complicates optimization procedures, raising serious concerns over device processability, reproducibility, and stability. Herein, highly efficient OPDs fabricated with single-component organic semiconductors are demonstrated via solution-processing. The non-fullerene acceptors (NFAs) with strong intrinsic D/A character are used as the photoactive layer, where the emissive intermolecular charge transfer excitonic (CTE) states are formed within <1 ps, and efficient photocurrent generation is achieved via strong quenching of these CTE states by reverse bias. Y6 and IT-4F-based OPDs show excellent OPD performances, low dark current density (≈10-9 A cm-2 ), high responsivity (≥0.15 A W-1 ), high specific detectivity (>1012 Jones), and fast photo-response time (<10 µs), comparable to the state-of-the-art BHJ OPDs. Together with strong CTE state quenching by electric field, these excellent OPD performances are also attributed to the high quadrupole moments of NFA molecules, which can lead to large interfacial energetic offset for efficient CTE dissociation. This work opens a new way to realize efficient OPDs using single-component systems via solution-processing and provides important molecular design rules.

3.
Nat Commun ; 14(1): 1870, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37015916

ABSTRACT

The non-fullerene acceptors (NFAs) employed in state-of-art organic photovoltaics (OPVs) often exhibit strong quadrupole moments which can strongly impact on material energetics. Herein, we show that changing the orientation of Y6, a prototypical NFA, from face-on to more edge-on by using different processing solvents causes a significant energetic shift of up to 210 meV. The impact of this energetic shift on OPV performance is investigated in both bilayer and bulk-heterojunction (BHJ) devices with PM6 polymer donor. The device electronic bandgap and the rate of non-geminate recombination are found to depend on the Y6 orientation in both bilayer and BHJ devices, attributed to the quadrupole moment-induced band bending. Analogous energetic shifts are also observed in other common polymer/NFA blends, which correlates well with NFA quadrupole moments. This work demonstrates the key impact of NFA quadruple moments and molecular orientation on material energetics and thereby on the efficiency of high-performance OPVs.

SELECTION OF CITATIONS
SEARCH DETAIL
...