Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 468: 116525, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37076090

ABSTRACT

Smoking can lead to several diseases and cause a reduction in fertility in men and women. Among the various components of cigarettes harmful during pregnancy, nicotine stands out. It can cause a reduction in placental blood flow, compromising the development of the baby with neurological, reproductive and endocrine consequences. Thus, we aimed to evaluate the effects of nicotine on the pituitary-gonadal axis of rats exposed during pregnancy and breastfeeding (1st generation - F1), and whether the possible damage observed would reach the 2nd generation (F2). Pregnant Wistar rats received 2 mg/kg/day of nicotine throughout the entire gestation and lactation. Part of the offspring was evaluated on the first neonatal day (F1) for macroscopic, histopathological and immunohistochemical analyses of brain and gonads. Another part of the offspring was kept until 90 days-old for mating and obtainment of progenies that had the same parameters evaluated at the end of pregnancy (F2). The occurrence of malformations was more frequent and diversified in nicotine-exposed F2. Brain alterations, including reduced size and changes in cell proliferation and death, were seen in both generations of nicotine-exposed rats. Male and female gonads of F1 exposed rats were also affected. The F2 rats showed reduced cellular proliferation and increased cell death on the pituitary and ovaries, besides increased anogenital distance in females. The number of mast cells was not enough altered to indicate an inflammatory process in brain and gonads. We conclude that prenatal exposure to nicotine causes transgenerational alterations in the structures of pituitary-gonadal axis in rats.


Subject(s)
Maternal Exposure , Prenatal Exposure Delayed Effects , Rats , Pregnancy , Female , Animals , Male , Humans , Maternal Exposure/adverse effects , Nicotine/toxicity , Rats, Wistar , Placenta , Reproduction
2.
Toxicol Appl Pharmacol ; 426: 115638, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34242569

ABSTRACT

Gonadal development begins in the intrauterine phase and females from most species are born with an established oocyte reserve. Exposure to drugs during gestation can compromise the offspring health, also affecting the gametes quality. Nicotine, the main component of cigarettes, is an oxidant agent capable of altering the fertility in men and women. As female gametes are susceptible to oxidative stress, this drug can damage the oolemma and affect oocyte maturation, induce errors during chromosomal segregation and DNA fragmentation. Oocyte mitochondria are particularly susceptible to injuries, contributing to the oocyte quality loss and embryonic development disruption. Thus, considering the high number of women who smoke during pregnancy, while significant events are occurring in the embryo for future fertility of offspring, we seek to verify the quality of the oocytes from adult rats exposed to nicotine during intrauterine phase and breastfeeding. Pregnant Wistar rats received nicotine by osmotic mini-pumps and the female progenies were evaluated in adulthood for oocyte quality (viability, lipid peroxidation, generation of reactive oxygen species and mitochondrial integrity) and reproductive capacity. Embryos (3dpc) and fetuses (20dpc) generated by these rats were also evaluated. The results showed that the dose of 2 mg/kg/day of nicotine through placenta and breast milk does not affect the number of oocytes and the fertility capacity of adult rats. However, it causes some morphological alterations in oocytes, mitochondrial changes, embryonic fragmentation and disruption of fetal development. The malformations in fetuses generated from these gametes can also indicate the occurrence of epigenetic modifications.


Subject(s)
Nicotine/toxicity , Oocytes/drug effects , Prenatal Exposure Delayed Effects , Reproduction/drug effects , Animals , Female , Fetal Development/drug effects , Lactation , Lipid Peroxidation/drug effects , Male , Maternal-Fetal Exchange , Mitochondria/drug effects , Oocytes/metabolism , Pregnancy , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
3.
Andrology ; 4(2): 218-31, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26824756

ABSTRACT

We previously observed that nicotine, administered to rats (Wistar) during pregnancy and lactation periods, provokes, in the progeny, late morphofunctional alterations in Leydig cell, body weight increase in adulthood (90 days post partum, dpp) as well as seminiferous epithelium injury. Aiming to investigate whether the spermatogenic damage previously observed in adult progenies from pregnant and lactating nicotine-exposed rat dams are maintained or whether it is worsened in older rats, we analyzed the morphological testicular alterations after up to two complete periods of spermatogenesis (53 days each), spermatic parameters, and sperm DNA fragmentation. Pregnant and lactating rats were nicotine-exposed (2 mg/kg/day) through an osmotic minipump implanted on the first day of pregnancy and replaced after birth. Absolute Control (no minipump) and Sham Control (minipump without nicotine) groups were established. The offspring were killed at 90, 143, and 196 dpp. Significant alterations in morphometric and stereological testicular parameters, such as concentration of sperm number, daily sperm production, and plasma and intratesticular levels of cholesterol and testosterone were not observed in nicotine-exposed rats. Testicular histopathological analysis showed small intraepithelial vacuolization and an accentuated germ cell desquamation in exposed rats. However, the offspring from nicotine-exposed dams exhibited higher frequency of morphologically abnormal spermatozoa and lower sperm motility in comparison with control groups. In addition, nicotine-exposed groups showed a significant reduction in sperm mitochondrial activity and an increased sperm DNA fragmentation (Comet assay). These results indicate a late reproductive damage in the male progeny caused by maternal nicotine exposure, related to the decrease in sperm quality.


Subject(s)
Nicotine/toxicity , Prenatal Exposure Delayed Effects , Spermatozoa/drug effects , Testis/drug effects , Animals , Body Weight/drug effects , Cholesterol/metabolism , Female , Lactation , Male , Organ Size/drug effects , Pregnancy , Rats, Wistar , Reproduction/drug effects , Sperm Count , Sperm Motility/drug effects , Testis/pathology , Testosterone/metabolism
4.
Reproduction ; 151(2): 117-33, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26556892

ABSTRACT

Nicotine is largely consumed in the world as a component of cigarettes. It can cross the placenta and reach the milk of smoking mothers. This drug induces apoptosis, affects sex hormone secretion, and leads to male infertility. To investigate the exposure to nicotine during the whole intrauterine and lactation phases in Sertoli cells, pregnant rats received nicotine (2 mg/kg per day) through osmotic minipumps. Male offsprings (30, 60, and 90 days old) had blood collected for hormonal analysis (FSH and LH) and their testes submitted for histophatological study, analysis of the frequency of the stages of seminiferous epithelium cycle, immunolabeling of apoptotic epithelial cells (TUNEL and Fas/FasL), analysis of the function and structure of Sertoli cells (respectively using transferrin and vimentin immunolabeling), and analysis of Sertoli-germ cell junctional molecule (ß-catenin immunolabeling). The exposure to nicotine increased the FSH and LH plasmatic levels in adult rats. Although nicotine had not changed the number of apoptotic cells, neither in Fas nor FasL expression, it provoked an intense sloughing of epithelial cells and also altered the frequency of some stages of the seminiferous epithelium cycle. Transferrin and ß-catenin expressions were not changed, but vimentin was significantly reduced in the early stages of the seminiferous cycle of the nicotine-exposed adult rats. Thus, we concluded that nicotine exposure during all gestational and lactation periods affects the structure of Sertoli cells by events causing intense germ cell sloughing observed in the tubular lumen and can compromise the fertility of the offspring.


Subject(s)
Gonadotropins/blood , Lactation/drug effects , Nicotine/toxicity , Prenatal Exposure Delayed Effects/blood , Prenatal Exposure Delayed Effects/pathology , Sertoli Cells/drug effects , Animals , Female , Male , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats , Sertoli Cells/pathology , Sertoli Cells/physiology , Spermatogenesis/drug effects , Spermatogenesis/physiology , Testis/drug effects , Testis/pathology
5.
Andrology ; 2(2): 175-85, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24574094

ABSTRACT

Nicotine is largely consumed as a component of cigarettes. It induces apoptosis, interferes with endocrine function by changing the sex hormones secretion and leads to male infertility. Testosterone is produced from cholesterol by Leydig cells (LC), with the participation of testicular macrophages (MO). Thus, to investigate whether nicotine administration to pregnant and lactating rats changes cholesterol and sexual hormone levels and LC and MO populations of offspring, female rats received nicotine (2 mg/kg/day) through osmotic minipumps from the first day of pregnancy up to the end of weaning. At 1, 30, 60 and 90 days post-partum (dpp) the plasma cholesterol and testosterone levels were obtained, as well as the biometric, histopathological and stereological testicular parameters. Nicotine reduced the body weight, cholesterol levels and lipid droplet number in foetal LC at 1 dpp. The number of apoptotic LC did not change in the offspring of nicotine group at any age studied. No alterations in the numerical densities of MO and LC occurred at 60 and 90 dpp. Hypertrophy of mature LC and increase in cholesterol and testosterone levels were noted at 90 dpp. In conclusion, nicotine when administered to rats throughout pregnancy and lactation induces morphofunctional alterations of foetal and mature LC and affects cholesterol and testosterone levels.


Subject(s)
Leydig Cells/physiology , Macrophages/physiology , Nicotine/pharmacology , Prenatal Exposure Delayed Effects , Animals , Apoptosis/drug effects , Body Weight/drug effects , Cholesterol/blood , Female , Ganglionic Stimulants/pharmacology , Lactation , Leydig Cells/drug effects , Macrophages/drug effects , Male , Nicotinic Agonists/administration & dosage , Nicotinic Agonists/pharmacology , Pregnancy , Rats , Testosterone/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...