Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Mol Biol (Mosk) ; 49(6): 1041-7, 2015.
Article in Russian | MEDLINE | ID: mdl-26710788

ABSTRACT

Bacterial ribonucleases (RNases) are considered to be potential anticancer agents. One of most important determinants of RNase cytotoxicity is the net charge of the molecule. In this work a set of mutants of the RNase from Streptomyces aureofaciens (RNase Sa), differing in the net charge of the protein molecules (from -7 to +6) and localization of additional positive charge at the N- or C-terminus of the molecule is used to study inhibition of cell growth. It has been found that the mutants of RNase with increased cationicity most effectively inhibit the growth of HEKhSK4 cells. Additional positive charge at the C-terminus of the molecule also increases the cytotoxic properties of RNases. It has been shown that RNase cytotoxicity correlated with the level of inhibition of the K+-current in cells.


Subject(s)
Mutation , Potassium/metabolism , Ribonucleases/toxicity , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Cell Survival/drug effects , HEK293 Cells , Humans , Ion Transport , Protein Structure, Tertiary , Ribonucleases/chemistry , Ribonucleases/genetics , Static Electricity , Streptomyces aureofaciens/enzymology
2.
J Mol Biol ; 312(2): 393-404, 2001 Sep 14.
Article in English | MEDLINE | ID: mdl-11554795

ABSTRACT

The aim of this study was to gain a better understanding of the contribution of hydrogen bonds by tyrosine -OH groups to protein stability. The amino acid sequences of RNases Sa and Sa3 are 69 % identical and each contains eight Tyr residues with seven at equivalent structural positions. We have measured the stability of the 16 tyrosine to phenylalanine mutants. For two equivalent mutants, the stability increases by 0.3 kcal/mol (RNase Sa Y30F) and 0.5 kcal/mol (RNase Sa3 Y33F) (1 kcal=4.184 kJ). For all of the other mutants, the stability decreases with the greatest decrease being 3.6 kcal/mol for RNase Sa Y52F. Seven of the 16 tyrosine residues form intramolecular hydrogen bonds and the average decrease in stability for these is 2.0(+/-1.0) kcal/mol. For the nine tyrosine residues that do not form intramolecular hydrogen bonds, the average decrease in stability is 0.4(+/-0.6) kcal/mol. Thus, most tyrosine -OH groups contribute favorably to protein stability even if they do not form intramolecular hydrogen bonds. Generally, the stability changes for equivalent positions in the two proteins are remarkably similar. Crystal structures were determined for two of the tyrosine to phenylalanine mutants of RNase Sa: Y80F (1.2 A), and Y86F (1.7 A). The structures are very similar to that of wild-type RNase Sa, and the hydrogen bonding partners of the tyrosine residues always form intermolecular hydrogen bonds to water in the mutants. These results provide further evidence that the hydrogen bonding and van der Waals interactions of polar groups in the tightly packed interior of folded proteins are more favorable than similar interactions with water in the unfolded protein, and that polar group burial makes a substantial contribution to protein stability.


Subject(s)
Isoenzymes/chemistry , Ribonucleases/chemistry , Streptomyces/enzymology , Tyrosine/chemistry , Tyrosine/metabolism , Amino Acid Substitution , Circular Dichroism , Crystallography, X-Ray , Hydrogen Bonding , Isoenzymes/metabolism , Models, Molecular , Mutation , Phenylalanine/chemistry , Phenylalanine/genetics , Phenylalanine/metabolism , Protein Conformation , Protein Denaturation , Ribonucleases/metabolism , Temperature , Thermodynamics , Tyrosine/genetics
3.
Proteins ; 44(3): 200-11, 2001 Aug 15.
Article in English | MEDLINE | ID: mdl-11455593

ABSTRACT

We have used NMR methods to characterize the structure and dynamics of ribonuclease Sa in solution. The solution structure of RNase Sa was obtained using the distance constraints provided by 2,276 NOEs and the C6-C96 disulfide bond. The 40 resulting structures are well determined; their mean pairwise RMSD is 0.76 A (backbone) and 1.26 A (heavy atoms). The solution structures are similar to previously determined crystal structures, especially in the secondary structure, but exhibit new features: the loop composed of Pro 45 to Ser 48 adopts distinct conformations and the rings of tyrosines 51, 52, and 55 have reduced flipping rates. Amide protons with greatly reduced exchange rates are found predominantly in interior beta-strands and the alpha-helix, but also in the external 3/10 helix and edge beta-strand linked by the disulfide bond. Analysis of (15)N relaxation experiments (R1, R2, and NOE) at 600 MHz revealed five segments, consisting of residues 1-5, 28-31, 46-50, 60-65, 74-77, retaining flexibility in solution. The change in conformation entropy for RNase SA folding is smaller than previously believed, since the native protein is more flexible in solution than in a crystal.


Subject(s)
Isoenzymes/chemistry , Ribonucleases/chemistry , Streptomyces aureofaciens/enzymology , Entropy , Hydrocarbons, Aromatic/chemistry , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Protein Conformation , Protein Folding , Recombinant Proteins/chemistry
5.
Protein Sci ; 10(6): 1206-15, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11369859

ABSTRACT

The net charge and isoelectric pH (pI) of a protein depend on the content of ionizable groups and their pK values. Ribonuclease Sa (RNase Sa) is an acidic protein with a pI = 3.5 that contains no Lys residues. By replacing Asp and Glu residues on the surface of RNase Sa with Lys residues, we have created a 3K variant (D1K, D17K, E41K) with a pI = 6.4 and a 5K variant (3K + D25K, E74K) with a pI = 10.2. We show that pI values estimated using pK values based on model compound data can be in error by >1 pH unit, and suggest how the estimation can be improved. For RNase Sa and the 3K and 5K variants, the solubility, activity, and stability have been measured as a function of pH. We find that the pH of minimum solubility varies with the pI of the protein, but that the pH of maximum activity and the pH of maximum stability do not.


Subject(s)
Isoenzymes/chemistry , Ribonucleases/chemistry , Aspartic Acid/chemistry , Circular Dichroism , Escherichia coli/metabolism , Glutamic Acid/chemistry , Hydrogen-Ion Concentration , Kinetics , Lysine/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Protein Denaturation , Solubility , Temperature , Thermodynamics
6.
Biochemistry ; 40(2): 310-3, 2001 Jan 16.
Article in English | MEDLINE | ID: mdl-11148023

ABSTRACT

On the basis of studies of Asn to Ala mutants, the gain in stability from burying amide groups that are hydrogen bonded to peptide groups is 80 cal/(mol A(3)). On the basis of similar studies of Leu to Ala and Ile to Val mutants, the gain in stability from burying -CH(2)- groups is 50 cal/(mol A(3)). Thus, the burial of an amide group contributes more to protein stability than the burial of an equivalent volume of -CH(2)- groups. Applying these results to folded proteins leads to the surprising conclusion that peptide group burial makes a larger contribution to protein stability than nonpolar side chain burial. Several studies have shown that the desolvation penalty for burying peptide groups is considerably smaller than generally thought. This suggests that the hydrogen bonding and van der Waals interactions of peptide groups in the tightly packed interior of folded protein are more favorable than similar interactions with water in the unfolded protein.


Subject(s)
Protein Folding , Amides/chemistry , Asparagine/chemistry , Hydrogen Bonding , Peptides/chemistry , Solvents , Water/chemistry
7.
Proteins ; Suppl 4: 1-7, 2000.
Article in English | MEDLINE | ID: mdl-11013396

ABSTRACT

The two most common methods of measuring the conformational stability of a protein are differential scanning calorimetry and an analysis of solvent denaturation curves by using the linear extrapolation method. In this article, we trace the history of the linear extrapolation method, review how the method is used to measure protein stability, and then discuss some of the other important uses.


Subject(s)
Protein Denaturation , Calorimetry, Differential Scanning , Solvents , Thermodynamics
8.
Protein Sci ; 9(7): 1395-8, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10933506

ABSTRACT

Several recent studies have shown that it is possible to increase protein stability by improving electrostatic interactions among charged groups on the surface of the folded protein. However, the stability increases are considerably smaller than predicted by a simple Coulomb's law calculation, and in some cases, a charge reversal on the surface leads to a decrease in stability when an increase was predicted. These results suggest that favorable charge-charge interactions are important in determining the denatured state ensemble, and that the free energy of the denatured state may be decreased more than that of the native state by reversing the charge of a side chain. We suggest that when the hydrophobic and hydrogen bonding interactions that stabilize the folded state are disrupted, the unfolded polypeptide chain rearranges to compact conformations with favorable long-range electrostatic interactions. These charge-charge interactions in the denatured state will reduce the net contribution of electrostatic interactions to protein stability and will help determine the denatured state ensemble. To support this idea, we show that the denatured state ensemble of ribonuclease Sa is considerably more compact at pH 7 where favorable charge-charge interactions are possible than at pH 3, where unfavorable electrostatic repulsion among the positive charges causes an expansion of the denatured state ensemble. Further support is provided by studies of the ionic strength dependence of the stability of charge-reversal mutants of ribonuclease Sa. These results may have important implications for the mechanism of protein folding.


Subject(s)
Protein Denaturation , Proteins/chemistry , Enzyme Stability , Isoenzymes/chemistry , Isoenzymes/genetics , Muramidase/chemistry , Muramidase/genetics , Mutation , Protein Conformation , Protein Folding , Proteins/genetics , Ribonuclease T1/chemistry , Ribonuclease T1/genetics , Ribonucleases/chemistry , Ribonucleases/genetics , Static Electricity
10.
Biochemistry ; 38(50): 16481-90, 1999 Dec 14.
Article in English | MEDLINE | ID: mdl-10600109

ABSTRACT

Hydrogen-exchange rates were measured for RNase T1 and three variants with Ala --> Gly substitutions at a solvent-exposed (residue 21) and a buried (residue 23) position in the helix: A21G, G23A, and A21G + G23A. These results were used to measure the stabilities of the proteins. The hydrogen-exchange stabilities (DeltaG(HX)) for the most stable residues in each variant agree with the equilibrium conformational stability measured by urea denaturation (DeltaG(U)), if the effects of D(2)O and proline isomerization are included [Huyghues-Despointes, B. M. P., Scholtz, J. M., and Pace, C. N. (1999) Nat. Struct. Biol. 6, 210-212]. These residues also show similar changes in DeltaG(HX) upon Ala --> Gly mutations (DeltaDeltaG(HX)) as compared to equilibrium measurements (DeltaDeltaG(U)), indicating that the most stable residues are exchanging from the globally unfolded ensemble. Alanine is stabilizing compared to glycine by 1 kcal/mol at a solvent-exposed site 21 as seen by other methods for the RNase T1 protein and peptide helix [Myers, J. K., Pace, C. N., and Scholtz, J. M. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 3833-2837], while it is destabilizing at the buried site 23 by the same amount. For the A21G variant, only local NMR chemical shift perturbations are observed compared to RNase T1. For the G23A variant, large chemical shift changes are seen throughout the sequence, although X-ray crystal structures of the variant and RNase T1 are nearly superimposable. Ala --> Gly mutations in the helix of RNase T1 at both helical positions alter the native-state hydrogen-exchange stabilities of residues throughout the sequence.


Subject(s)
Alanine/genetics , Glycine/genetics , Hydrogen/chemistry , Mutagenesis, Site-Directed , Ribonuclease T1/chemistry , Amino Acid Substitution/genetics , Crystallography, X-Ray , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Denaturation , Protein Structure, Secondary , Ribonuclease T1/genetics , Ribonuclease T1/metabolism , Solvents , Urea/chemistry
12.
Biochemistry ; 38(40): 13379-84, 1999 Oct 05.
Article in English | MEDLINE | ID: mdl-10529213

ABSTRACT

The side-chain carboxyl of Asp 76 in ribonuclease T1 (RNase T1) is buried, charged, non-ion-paired, and forms three good intramolecular hydrogen bonds (2.63, 2.69, and 2.89 A) and a 2.66 A hydrogen bond to a buried, conserved water molecule. When Asp 76 was replaced by Asn, Ser, and Ala, the conformational stability of the protein decreased by 3.1, 3.2, and 3.7 kcal/mol, respectively. The stability was measured as a function of pH for wild-type RNase T1 and the D76N mutant and showed that the pH dependence below pH 3 was almost entirely due to Asp 76. The pK of Asp 76 is 0.5 in the native state and 3.7 in the denatured state. Thus, the hydrogen bonding of the carboxyl group of Asp 76 contributes more than half of the net stability of RNase T1 at pH 7. In addition, the charged carboxyl of Asp 76 stabilizes structure in the denatured states of RNase T1 that is not present in D76N, D76S, and D76A.


Subject(s)
Aspartic Acid/chemistry , Ribonuclease T1/chemistry , Amino Acid Substitution/genetics , Asparagine/chemistry , Asparagine/genetics , Aspartic Acid/genetics , Enzyme Stability , Hydrogen-Ion Concentration , Ions , Models, Chemical , Point Mutation , Protein Conformation , Protein Denaturation , Serine/chemistry , Serine/genetics , Static Electricity
13.
Protein Sci ; 8(9): 1843-9, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10493585

ABSTRACT

It is difficult to increase protein stability by adding hydrogen bonds or burying nonpolar surface. The results described here show that reversing the charge on a side chain on the surface of a protein is a useful way of increasing stability. Ribonuclease T1 is an acidic protein with a pI approximately 3.5 and a net charge of approximately -6 at pH 7. The side chain of Asp49 is hyperexposed, not hydrogen bonded, and 8 A from the nearest charged group. The stability of Asp49Ala is 0.5 kcal/mol greater than wild-type at pH 7 and 0.4 kcal/mol less at pH 2.5. The stability of Asp49His is 1.1 kcal/mol greater than wild-type at pH 6, where the histidine 49 side chain (pKa = 7.2) is positively charged. Similar results were obtained with ribonuclease Sa where Asp25Lys is 0.9 kcal/mol and Glu74Lys is 1.1 kcal/mol more stable than the wild-type enzyme. These results suggest that protein stability can be increased by improving the coulombic interactions among charged groups on the protein surface. In addition, the stability of RNase T1 decreases as more hydrophobic aromatic residues are substituted for Ala49, indicating a reverse hydrophobic effect.


Subject(s)
Proteins/chemistry , Aspartic Acid/chemistry , Electrochemistry , Histidine/chemistry , Hydrogen-Ion Concentration , Protein Conformation , Protein Denaturation/genetics , Proteins/genetics , Recombinant Proteins/chemistry , Ribonuclease T1/chemistry , Ribonuclease T1/genetics , Static Electricity , Thermodynamics , Urea/chemistry
14.
Protein Sci ; 8(7): 1500-4, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10422839

ABSTRACT

The change in heat capacity deltaCp for the folding of ribonuclease A was determined using differential scanning calorimetry and thermal denaturation curves. The methods gave equivalent results, deltaCp = 1.15+/-0.08 kcal mol(-1) K(-1). Estimates of the conformational stability of ribonuclease A based on these results from thermal unfolding are in good agreement with estimates from urea unfolding analyzed using the linear extrapolation method.


Subject(s)
Protein Folding , Ribonuclease, Pancreatic/chemistry , Thermodynamics , Calorimetry, Differential Scanning , Hot Temperature , Protein Denaturation
16.
J Biol Chem ; 274(16): 10945-50, 1999 Apr 16.
Article in English | MEDLINE | ID: mdl-10196174

ABSTRACT

Biglycan and decorin have been overexpressed in eukaryotic cells and two major glycoforms isolated under native conditions: a proteoglycan substituted with glycosaminoglycan chains; and a core protein form secreted devoid of glycosaminoglycans (Hocking, A. M., Strugnell, R. A., Ramamurthy, P., and McQuillan, D. J. (1996) J. Biol. Chem. 271, 19571-19577; Ramamurthy, P., Hocking, A. M., and McQuillan, D. J. (1996) J. Biol. Chem. 271, 19578-19584). Far-UV CD spectroscopy of decorin and biglycan proteoglycans indicates that, although they are predominantly beta-sheet, biglycan has a significantly higher content of alpha-helical structure. Decorin proteoglycan and core protein are very similar, whereas the biglycan core protein exhibits closer similarity to the decorin glycoforms than to the biglycan proteoglycan form. However, enzymatic removal of the chondroitin sulfate chains from biglycan proteoglycan does not induce a shift to the core protein structure, suggesting that the final form is influenced by polysaccharide addition only during biosynthesis. Fluorescence emission spectroscopy demonstrated that the single tryptophan residue, which is at a conserved position at the C-terminal domain of both biglycan and decorin, is found in similar microenvironments. This indicates that in this specific domain the different glycoforms do exhibit apparent conservation of structure. Exposure of decorin and biglycan to 10 M urea resulted in an increase in fluorescent intensity, which indicates that the emission from tryptophan in the native state is quenched. Comparison of urea-induced protein unfolding curves provide further evidence that decorin and biglycan assume different structures in solution. Decorin proteoglycan and core protein unfold in a manner similar to a classic two-state model, in which there is a steep transition to an unfolded state between 1 and 2 M urea. The biglycan core protein also shows a similar steep transition. However, biglycan proteoglycan shows a broad unfolding transition between 1 and 6 M urea, probably indicating the presence of stable unfolding intermediates.


Subject(s)
Proteoglycans/chemistry , Amino Acid Sequence , Biglycan , Circular Dichroism , Decorin , Extracellular Matrix Proteins , Glycosylation , Molecular Sequence Data , Protein Denaturation , Protein Folding , Protein Structure, Secondary , Sequence Homology, Amino Acid , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Urea/chemistry
17.
Biochemistry ; 37(46): 16192-200, 1998 Nov 17.
Article in English | MEDLINE | ID: mdl-9819211

ABSTRACT

The contribution of hydrogen bonding by peptide groups to the conformational stability of globular proteins was studied. One of the conserved residues in the microbial ribonuclease (RNase) family is an asparagine at position 39 in RNase Sa, 44 in RNase T1, and 58 in RNase Ba (barnase). The amide group of this asparagine is buried and forms two similar intramolecular hydrogen bonds with a neighboring peptide group to anchor a loop on the surface of all three proteins. Thus, it is a good model for the hydrogen bonding of peptide groups. When the conserved asparagine is replaced with alanine, the decrease in the stability of the mutant proteins is 2.2 (Sa), 1.8 (T1), and 2.7 (Ba) kcal/mol. When the conserved asparagine is replaced by aspartate, the stability of the mutant proteins decreases by 1.5 and 1.8 kcal/mol for RNases Sa and T1, respectively, but increases by 0.5 kcal/mol for RNase Ba. When the conserved asparagine was replaced by serine, the stability of the mutant proteins was decreased by 2.3 and 1.7 kcal/mol for RNases Sa and T1, respectively. The structure of the Asn 39 --> Ser mutant of RNase Sa was determined at 1.7 A resolution. There is a significant conformational change near the site of the mutation: (1) the side chain of Ser 39 is oriented differently than that of Asn 39 and forms hydrogen bonds with two conserved water molecules; (2) the peptide bond of Ser 42 changes conformation in the mutant so that the side chain forms three new intramolecular hydrogen bonds with the backbone to replace three hydrogen bonds to water molecules present in the wild-type structure; and (3) the loss of the anchoring hydrogen bonds makes the surface loop more flexible in the mutant than it is in wild-type RNase Sa. The results show that burial and hydrogen bonding of the conserved asparagine make a large contribution to microbial RNase stability and emphasize the importance of structural information in interpreting stability studies of mutant proteins.


Subject(s)
Asparagine/chemistry , Conserved Sequence , Isoenzymes/chemistry , Ribonuclease T1/chemistry , Ribonucleases/chemistry , Asparagine/genetics , Bacterial Proteins , Conserved Sequence/genetics , Crystallography, X-Ray , Enzyme Stability/genetics , Hydrogen Bonding , Models, Molecular , Protein Conformation , Protein Denaturation , Serine/genetics , Urea/chemistry
18.
Biophys J ; 75(1): 422-7, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9649402

ABSTRACT

The average globular protein contains 30% alpha-helix, the most common type of secondary structure. Some amino acids occur more frequently in alpha-helices than others; this tendency is known as helix propensity. Here we derive a helix propensity scale for solvent-exposed residues in the middle positions of alpha-helices. The scale is based on measurements of helix propensity in 11 systems, including both proteins and peptides. Alanine has the highest helix propensity, and, excluding proline, glycine has the lowest, approximately 1 kcal/mol less favorable than alanine. Based on our analysis, the helix propensities of the amino acids are as follows (kcal/mol): Ala = 0, Leu = 0.21, Arg = 0.21, Met = 0.24, Lys = 0.26, Gln = 0.39, Glu = 0.40, Ile = 0.41, Trp = 0.49, Ser = 0.50, Tyr = 0. 53, Phe = 0.54, Val = 0.61, His = 0.61, Asn = 0.65, Thr = 0.66, Cys = 0.68, Asp = 0.69, and Gly = 1.


Subject(s)
Peptides/chemistry , Protein Structure, Secondary , Proteins/chemistry , Amino Acids/chemistry , Biophysical Phenomena , Biophysics , Thermodynamics
19.
J Mol Biol ; 279(1): 271-86, 1998 May 29.
Article in English | MEDLINE | ID: mdl-9636716

ABSTRACT

Ribonucleases Sa, Sa2, and Sa3 are three small, extracellular enzymes produced by different strains of Streptomyces aureofaciens with amino acid sequences that are 50% identical. We have studied the unfolding of these enzymes by heat and urea to determine the conformational stability and its dependence on temperature, pH, NaCl, and the disulfide bond. All three of the Sa ribonucleases unfold reversibly by a two-state mechanism with melting temperatures, Tm, at pH 7 of 48.4 degrees C (Sa), 41.1 degrees C (Sa2), and 47.2 degrees C (Sa3). The Tm values are increased in the presence of 0.5 M NaCl by 4.0 deg. C (Sa), 0.1 deg. C (Sa2), and 7.2 deg. C (Sa3). The Tm values are decreased by 20.0 deg. C (Sa), 31.5 deg. C (Sa2), and 27.0 deg. C (Sa3) when the single disulfide bond in the molecules is reduced. We compare these results with similar studies on two other members of the microbial ribonuclease family, RNase T1 and RNase Ba (barnase), and with a member of the mammalian ribonuclease family, RNase A. At pH 7 and 25 degrees C, the conformational stabilities of the ribonucleases are (kcal/mol): 2.9 (Sa2), 5.6 (Sa3), 6.1 (Sa), 6.6 (T1), 8.7 (Ba), and 9.2 (A). Our analysis of the stabilizing forces suggests that the hydrophobic effect contributes from 90 to 110 kcal/mol and that hydrogen bonding contributes from 70 to 105 kcal/mol to the stability of these ribonucleases. Thus, we think that the hydrophobic effect and hydrogen bonding make large but comparable contributions to the conformational stability of these proteins.


Subject(s)
Isoenzymes/chemistry , Protein Denaturation/drug effects , Protein Folding , Ribonucleases/chemistry , Streptomyces aureofaciens/chemistry , Amino Acid Sequence , Disulfides/chemistry , Molecular Sequence Data , Sequence Alignment , Sequence Homology, Amino Acid , Sodium Chloride/pharmacology , Temperature , Thermodynamics , Urea/pharmacology
20.
Protein Sci ; 7(2): 383-8, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9521115

ABSTRACT

Trifluoroethanol (TFE) is often used to increase the helicity of peptides to make them usable as models of helices in proteins. We have measured helix propensities for all 20 amino acids in water and two concentrations of trifluoroethanol, 15 and 40% (v/v) using, as a model system, a peptide derived from the sequence of the alpha-helix of ribonuclease T1. There are three main conclusions from our studies. (1) TFE alters electrostatic interactions in the ribonuclease T1 helical peptide such that the dependence of the helical content on pH is lost in 40% TFE. (2) Helix propensities measured in 15% TFE correlate well with propensities measured in water, however, the correlation with propensities measured in 40% TFE is significantly worse. (3) Propensities measured in alanine-based peptides and the ribonuclease T1 peptide in TFE show very poor agreement, revealing that TFE greatly increases the effect of sequence context.


Subject(s)
Peptide Fragments/chemistry , Ribonuclease T1/chemistry , Trifluoroethanol/chemistry , Amino Acid Sequence , Molecular Sequence Data , Static Electricity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...