Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(12): e0294995, 2023.
Article in English | MEDLINE | ID: mdl-38091313

ABSTRACT

Records of ice-on and ice-off dates are available for lakes and rivers across the Northern Hemisphere spanning decades and in some cases centuries. This data provides an opportunity to investigate the climatic processes that may control ice phenology. Previous studies have reported a trend toward shorter ice-covered seasons with global warming, as well as links between ice phenology and several modes of natural climate variability such as the North Atlantic Oscillation, the Pacific-North American Pattern, the El Niño-Southern Oscillation, the Pacific Decadal Oscillation, and the Atlantic Multidecadal Oscillation. The 11-year sunspot cycle has also been proposed as a driver of ice phenology, which is somewhat surprising given that this cycle's strongest impacts are in the stratosphere. In this study, we use a large data set of lakes and rivers across the Northern Hemisphere to test this potential link. We find little or no connection between the sunspot cycle and either ice-on or ice-off dates. We conclude that while many well-known climate cycles do impact ice phenology, we are able to rule out any strong impact of the solar cycle.


Subject(s)
Lakes , Rivers , Seasons , El Nino-Southern Oscillation , Ice Cover
2.
Limnol Oceanogr Lett ; 8(1): 190-211, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-37539375

ABSTRACT

Factors driving freshwater salinization syndrome (FSS) influence the severity of impacts and chances for recovery. We hypothesize that spread of FSS across ecosystems is a function of interactions among five state factors: human activities, geology, flowpaths, climate, and time. (1) Human activities drive pulsed or chronic inputs of salt ions and mobilization of chemical contaminants. (2) Geology drives rates of erosion, weathering, ion exchange, and acidification-alkalinization. (3) Flowpaths drive salinization and contaminant mobilization along hydrologic cycles. (4) Climate drives rising water temperatures, salt stress, and evaporative concentration of ions and saltwater intrusion. (5) Time influences consequences, thresholds, and potentials for ecosystem recovery. We hypothesize that state factors advance FSS in distinct stages, which eventually contribute to failures in systems-level functions (supporting drinking water, crops, biodiversity, infrastructure, etc.). We present future research directions for protecting freshwaters at risk based on five state factors and stages from diagnosis to prognosis to cure.

3.
Ecology ; 102(12): e03540, 2021 12.
Article in English | MEDLINE | ID: mdl-34582563

ABSTRACT

Impacts of invasive species are often context specific due to varying ecological interactions. Physical structure of environments hosting invaders is also potentially important but has received limited attention. An invasive macroalga, Agarophyton vermiculophyllum, has spread across the northern hemisphere with mixed positive, neutral and negative effects on resident species. Agarophyton colonizes mudflats that vary in topography due to interactions of sediments with hydrodynamic forces. We tested the hypothesis that mudflat geomorphology moderates the effect of Agarophyton on shorebirds and invertebrates. We surveyed 30 mudflats in the Virginia Coast Reserve quantifying elevation and topography. Invertebrate and bird abundances were also quantified. Mudflat geomorphology ranged from smooth to hummocky and was correlated with invertebrate and shorebird abundance and interactions based on piecewise structural equation models. After accounting for geomorphology, Agarophyton had little effect on invertebrate abundance. Shorebird numbers were differentially influenced by mudflat topography, with positive correlations to invertebrates (worms) on smooth mudflats, and to macroalgae on hummocky mudflats. These differences are likely to be due to sediment properties in interaction with structural changes induced by Agarophyton mats that affect prey accessibility for birds. Even on apparently simple mudflats, geomorphic structure emerged as important, modifying invasive species impacts and differentially influencing consumers.


Subject(s)
Invertebrates , Seaweed , Animals , Birds , Introduced Species
4.
PLoS One ; 15(4): e0231337, 2020.
Article in English | MEDLINE | ID: mdl-32275732

ABSTRACT

Exotic species may increase or decrease native biodiversity. However, effects of exotic species are often mixed; and indirect pathways and compensatory changes can mask effects. Context-specific assessments of the indirect impacts of exotic species are also needed across multiple spatial scales. Agarophyton vermiculophyllum (previously Gracilaria vermiculophylla), an exotic, invasive macroalga, has established throughout the western hemisphere with reported positive or neutral impacts on biodiversity. Shorebirds are an important group for conservation in areas invaded by A. vermiculophyllum. We assess the impacts of this invader on shorebirds by measuring behavior and habitat selection at spatial scales ranging from algal patches to the entire study region. Birds were considered either flexible-foragers that used diverse foraging techniques, or specialized-foragers that employed fewer, more specialized foraging techniques. Responses were scale dependent, with patterns varying between spatial scales, and between behavior and habitat selection. However, a general pattern of habitat selection emerged wherein flexible-foraging shorebirds preferred A. vermiculophyllum habitat, and for specialized-foragers, habitat selection of A. vermiculophyllum was mixed. Meanwhile, flexible-foraging birds tended to neutrally use or avoid uninvaded habitat, and specialized-foraging birds mostly preferred uninvaded habitat. Shorebird behavioral response was less clear; with flexible-foragers spending less time on bare sediment than expected, the only significant response. Shorebird response to A. vermiculophyllum differed by foraging mode; likely because flexible, opportunistic species more readily use invaded habitat. Increases in A. vermiculophyllum could result in functional homogenization if the bare habitat preferred by specialized-foragers is reduced too greatly. We hypothesize the effect of scale is driven by differences among tidal flats. Thus, tidal flat properties such as sediment grain size and microtopography would determine whether foraging from A. vermiculophyllum was optimal for a shorebird. Specialization and spatial scale are important when assessing the biodiversity conservation impacts of invasive A. vermiculophyllum.


Subject(s)
Biodiversity , Birds/physiology , Feeding Behavior , Gracilaria/physiology , Animals , Food Chain , Movement
5.
Acta Neuropathol Commun ; 8(1): 43, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32252825

ABSTRACT

A hallmark pathology of Alzheimer's disease (AD) is the formation of amyloid ß (Aß) deposits that exhibit diverse localization and morphologies, ranging from diffuse to cored-neuritic deposits in brain parenchyma, with cerebral vascular deposition in leptomeningeal and parenchymal compartments. Most AD brains exhibit the full spectrum of pathologic Aß morphologies. In the course of studies to model AD amyloidosis, we have generated multiple transgenic mouse models that vary in the nature of the transgene constructs that are expressed; including the species origin of Aß peptides, the levels and length of Aß that is deposited, and whether mutant presenilin 1 (PS1) is co-expressed. These models recapitulate features of human AD amyloidosis, but interestingly some models can produce pathology in which one type of Aß morphology dominates. In prior studies of mice that primarily develop cored-neuritic deposits, we determined that Aß deposition is associated with changes in cytosolic protein solubility in which a subset of proteins become detergent-insoluble, indicative of secondary proteome instability. Here, we survey changes in cytosolic protein solubility across seven different transgenic mouse models that exhibit a range of Aß deposit morphologies. We find a surprisingly diverse range of changes in proteome solubility across these models. Mice that deposit human Aß40 and Aß42 in cored-neuritic plaques had the most robust changes in proteome solubility. Insoluble cytosolic proteins were also detected in the brains of mice that develop diffuse Aß42 deposits but to a lesser extent. Notably, mice with cored deposits containing only Aß42 had relatively few proteins that became detergent-insoluble. Our data provide new insight into the diversity of biological effects that can be attributed to different types of Aß pathology and support the view that fibrillar cored-neuritic plaque pathology is the more disruptive Aß pathology in the Alzheimer's cascade.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloidosis/metabolism , Brain/metabolism , Disease Models, Animal , Mice , Peptide Fragments/metabolism , Plaque, Amyloid/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Amyloidosis/genetics , Amyloidosis/pathology , Animals , Brain/pathology , Gliosis/genetics , Gliosis/metabolism , Gliosis/pathology , Humans , Mice, Transgenic , Peptide Fragments/genetics , Plaque, Amyloid/genetics , Plaque, Amyloid/pathology , Presenilin-1/genetics , Proteome , Solubility
7.
J Econ Entomol ; 112(3): 1130-1137, 2019 05 22.
Article in English | MEDLINE | ID: mdl-30689896

ABSTRACT

Larvae of Prionus californicus Motschulsky feed on the roots of many woody perennial plants and are economically important pests of hop Humulus lupulus L. (Urticales: Cannabaceae) and sweet cherry Prunus avium (L.) (Magnoliopsida: Rosaceae) in the United States Pacific Northwest and Intermountain West. Adult males are strongly attracted to a volatile sex pheromone, (3R,5S)-3,5-dimethyldodecanoic acid, produced by females. Here, we summarize the results of field experiments evaluating the synthetic pheromone in a blend of all four possible stereoisomers as a means for managing P. californicus in hop yards and sweet cherry orchards by mating disruption (MD). Mean capture of male beetles was lower, in all 3 yr of the study, from plots in commercial hop yards and sweet cherry orchards treated with synthetic P. californicus pheromone than from similar, untreated plots. Although trap catch was lower in sweet cherry, relative differences between trap catches from MD and nonmating disruption plots were similar to that seen in hop yards. The number of P. californicus larvae recovered from plots in hop yards treated for three consecutive growing seasons with synthetic pheromone was lower than in similar plots that were not treated with the pheromone or treated with the soil fumigant ethoprop. Our research demonstrates that deployment of synthetic P. californicus pheromone effectively reduces mate-finding by males, can effectively reduce larvae populations in pheromone-treated hop yards, and thus, has excellent potential for managing P. californicus in hop, sweet cherry, and perhaps in other crops where it or Prionus species are pests.


Subject(s)
Coleoptera , Humulus , Prunus avium , Sex Attractants , Animals , Female , Male , Pheromones
8.
Article in English | MEDLINE | ID: mdl-30509916

ABSTRACT

Widespread changes in water temperatures, salinity, alkalinity and pH have been documented in inland waters in North America, which influence ion exchange, weathering rates, chemical solubility and contaminant toxicity. Increasing major ion concentrations from pollution, human-accelerated weathering and saltwater intrusion contribute to multiple ecological stressors such as changing ionic strength and pH and mobilization of chemical mixtures resulting in the freshwater salinization syndrome (FSS). Here, we explore novel combinations of elements, which are transported together as chemical mixtures containing salts, nutrients and metals as a consequence of FSS. First, we show that base cation concentrations have increased in regions primarily in North America and Europe over 100 years. Second, we show interactions between specific conductance, pH, nitrate and metals using data from greater than 20 streams located in different regions of the USA. Finally, salinization experiments and routine monitoring demonstrate mobilization of chemical mixtures of cations, metals and nutrients in 10 streams draining the Washington, DC-Baltimore, MD metropolitan regions. Freshwater salinization mobilizes diverse chemical mixtures influencing drinking water quality, infrastructure corrosion, freshwater CO2 concentrations and biodiversity. Most regulations currently target individual contaminants, but FSS requires managing mobilization of multiple chemical mixtures and interacting ecological stressors as consequences of freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.


Subject(s)
Aquatic Organisms/drug effects , Fresh Water/chemistry , Salinity , Water Pollutants, Chemical/toxicity , Aquatic Organisms/physiology , Europe , North America
9.
Sci Rep ; 8(1): 15736, 2018 10 24.
Article in English | MEDLINE | ID: mdl-30356084

ABSTRACT

Organic carbon accumulation in the sediments of inland aquatic and coastal ecosystems is an important process in the global carbon budget that is subject to intense human modification. To date, research has focused on quantifying accumulation rates in individual or groups of aquatic ecosystems to quantify the aquatic carbon sinks. However, there hasn't been a synthesis of rates across aquatic ecosystem to address the variability in rates within and among ecosystems types. Doing so would identify gaps in our understanding of accumulation rates and potentially reveal carbon sinks vulnerable to change. We synthesized accumulation rates from the literature, compiling 464 rate measurements from 103 studies of carbon accumulated in the modern period (ca. 200 years). Accumulation rates from the literature spanned four orders of magnitude varying substantially within and among ecosystem categories, with mean estimates for ecosystem categories ranging from 15.6 to 73.2 g C m-2 y-1 within ecosystem categories. With the exception of lakes, mean accumulation rates were poorly constrained due to high variability and paucity of data. Despite the high uncertainty, the estimates of modern accumulation rate compiled here are an important step for constructing carbon budgets and predicting future change.


Subject(s)
Carbon Sequestration , Ecosystem , Human Activities/trends , Humans , Kinetics , Water/chemistry
10.
Acta Neuropathol ; 136(6): 919-938, 2018 12.
Article in English | MEDLINE | ID: mdl-30140941

ABSTRACT

The deposition of pathologic misfolded proteins in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, frontotemporal dementia and amyotrophic lateral sclerosis is hypothesized to burden protein homeostatic (proteostatic) machinery, potentially leading to insufficient capacity to maintain the proteome. This hypothesis has been supported by previous work in our laboratory, as evidenced by the perturbation of cytosolic protein solubility in response to amyloid plaques in a mouse model of Alzheimer's amyloidosis. In the current study, we demonstrate changes in proteome solubility are a common pathology to mouse models of neurodegenerative disease. Pathological accumulations of misfolded tau, α-synuclein and mutant superoxide dismutase 1 in CNS tissues of transgenic mice were associated with changes in the solubility of hundreds of CNS proteins in each model. We observed that changes in proteome solubility were progressive and, using the rTg4510 model of inducible tau pathology, demonstrated that these changes were dependent upon sustained expression of the primary pathologic protein. In all of the models examined, changes in proteome solubility were robust, easily detected, and provided a sensitive indicator of proteostatic disruption. Interestingly, a subset of the proteins that display a shift towards insolubility were common between these different models, suggesting that a specific subset of the proteome is vulnerable to proteostatic disruption. Overall, our data suggest that neurodegenerative proteinopathies modeled in mice impose a burden on the proteostatic network that diminishes the ability of neural cells to prevent aberrant conformational changes that alter the solubility of hundreds of abundant cellular proteins.


Subject(s)
Central Nervous System/metabolism , Central Nervous System/pathology , Neurodegenerative Diseases/pathology , Neurofibrillary Tangles/pathology , Proteome/metabolism , Age Factors , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Chromatography, High Pressure Liquid , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Transgenic , Mutation/genetics , Neurodegenerative Diseases/genetics , Neurofibrillary Tangles/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Protein Folding , Proteome/genetics , Solubility , Tandem Mass Spectrometry , alpha-Synuclein/metabolism , tau Proteins/genetics , tau Proteins/metabolism
11.
Mol Neurodegener ; 13(1): 23, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29776378

ABSTRACT

BACKGROUND: Prior studies in C. elegans demonstrated that the expression of aggregation-prone polyglutamine proteins in muscle wall cells compromised the folding of co-expressed temperature-sensitive proteins, prompting interest in whether the accumulation of a misfolded protein in pathologic features of human neurodegenerative disease burdens cellular proteostatic machinery in a manner that impairs the folding of other cellular proteins. METHODS: Mice expressing high levels of mutant forms of tau and α-synuclein (αSyn), which develop inclusion pathologies of the mutant protein in brain and spinal cord, were crossed to mice expressing low levels of mutant superoxide dismutase 1 fused to yellow fluorescent protein (G85R-SOD1:YFP) for aging and neuropathological evaluation. RESULTS: Mice expressing low levels of G85R-SOD1:YFP, alone, lived normal lifespans and were free of evidence of inclusion pathology, setting the stage to use this protein as a reporter of proteostatic function. We observed robust induction of G85R-SOD1:YFP inclusion pathology in the neuropil of spinal cord and brainstem of bigenic mice that co-express high levels of mutant tau in the spinal axis and develop robust spinal tau pathology (JNPL3 mice). In contrast, in crosses of the G85R-SOD1:YFP mice with mice that model spinal α-synucleinopathy (the M83 model of αSyn pathology), we observed no G85R-SOD1:YFP inclusion formation. Similarly, in crosses of the G85R-SOD1:YFP mice to mice that model cortical tau pathology (rTg4510 mice), we did not observe induction of G85R-SOD1:YFP inclusions. CONCLUSION: Despite robust burdens of neurodegenerative pathology in M83 and rTg4510 mice, the introduction of the G85R-SOD1:YFP protein was induced to aggregate only in the context of spinal tau pathology present in the JNPL3 model. These findings suggest unexpected specificity, mediated by both the primary protein pathology and cellular context, in the induced "secondary aggregation" of a mutant form of SOD1 that could be viewed as a reporter of proteostatic function.


Subject(s)
Superoxide Dismutase-1/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism , Animals , Brain/pathology , Female , Humans , Mice , Mice, Transgenic , Mutation , Protein Folding , Spinal Cord/pathology , Superoxide Dismutase-1/genetics
12.
Proc Natl Acad Sci U S A ; 115(4): E574-E583, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29311318

ABSTRACT

Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity.


Subject(s)
Rivers/chemistry , Salinity , Water Pollution , Hydrogen-Ion Concentration , United States
13.
J Acoust Soc Am ; 144(6): 3201, 2018 12.
Article in English | MEDLINE | ID: mdl-30599645

ABSTRACT

To date, the infrasound community has avoided deployments in noisy urban sites because interests have been in monitoring distant sources with low noise sites. As monitoring interests expand to include low-energy urban sources only detectable close to the source, case studies are needed to demonstrate the challenges and benefits of urban infrasound monitoring. This case study highlights one approach to overcoming urban challenges and identifies a signal's source in a complex acoustic field. One 38 m and one 120 m aperture infrasound arrays were deployed on building rooftops north of downtown Dallas, Texas. Structural signals in the recorded data were identified, and the backazimuth to the source determined with frequency-wavenumber analysis. Fourteen days of data were analyzed to produce 314 coherent continuous-wave packets, with 246 of these detections associated with a narrow range of backazimuth directions. Analyzing the backazimuths from the two arrays identified the Mockingbird Bridge as the probable source which was the verified with seismic measurement on the structure. Techniques described here overcame the constraints imposed by urban environments and provide a basis to monitor infrastructure and its conditions at local distances (0-100 km).

14.
Gigascience ; 6(12): 1-22, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29053868

ABSTRACT

Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states.LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600-12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales.


Subject(s)
Databases, Factual , Lakes/chemistry , Water Quality , United States
15.
Sci Adv ; 3(3): e1601765, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28345035

ABSTRACT

Widespread evidence that organic matter exported from terrestrial into aquatic ecosystems supports recipient food webs remains controversial. A pressing question is not only whether high terrestrial support is possible but also what the general conditions are under which it arises. We assemble the largest data set, to date, of the isotopic composition (δ2H, δ13C, and δ15N) of lake zooplankton and the resources at the base of their associated food webs. In total, our data set spans 559 observations across 147 lakes from the boreal to subtropics. By predicting terrestrial resource support from within-lake and catchment-level characteristics, we found that half of all consumer observations that is, the median were composed of at least 42% terrestrially derived material. In general, terrestrial support of zooplankton was greatest in lakes with large physical and hydrological connections to catchments that were rich in aboveground and belowground organic matter. However, some consumers responded less strongly to terrestrial resources where within-lake production was elevated. Our study shows that multiple mechanisms drive widespread cross-ecosystem support of aquatic consumers across Northern Hemisphere lakes and suggests that changes in terrestrial landscapes will influence ecosystem processes well beyond their boundaries.


Subject(s)
Food Chain , Lakes , Models, Biological
16.
Proc Natl Acad Sci U S A ; 114(2): 352-357, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28028234

ABSTRACT

Directional change in environmental drivers sometimes triggers regime shifts in ecosystems. Theory and experiments suggest that regime shifts can be detected in advance, and perhaps averted, by monitoring resilience indicators such as variance and autocorrelation of key ecosystem variables. However, it is uncertain whether management action prompted by a change in resilience indicators can prevent an impending regime shift. We caused a cyanobacterial bloom by gradually enriching an experimental lake while monitoring an unenriched reference lake and a continuously enriched reference lake. When resilience indicators exceeded preset boundaries, nutrient enrichment was stopped in the experimental lake. Concentrations of algal pigments, dissolved oxygen saturation, and pH rapidly declined following cessation of nutrient enrichment and became similar to the unenriched lake, whereas a large bloom occurred in the continuously enriched lake. This outcome suggests that resilience indicators may be useful in management to prevent unwanted regime shifts, at least in some situations. Nonetheless, a safer approach to ecosystem management would build and maintain the resilience of desirable ecosystem conditions, for example, by preventing excessive nutrient input to lakes and reservoirs.


Subject(s)
Cyanobacteria/physiology , Eutrophication/physiology , Ecosystem , Environmental Monitoring/methods , Lakes/microbiology , Models, Biological
17.
J Cell Sci ; 129(9): 1892-901, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27026526

ABSTRACT

The capacity of the cell to produce, fold and degrade proteins relies on components of the proteostasis network. Multiple types of insults can impose a burden on this network, causing protein misfolding. Using thermal stress, a classic example of acute proteostatic stress, we demonstrate that ∼5-10% of the soluble cytosolic and nuclear proteome in human HEK293 cells is vulnerable to misfolding when proteostatic function is overwhelmed. Inhibiting new protein synthesis for 30 min prior to heat-shock dramatically reduced the amount of heat-stress induced polyubiquitylation, and reduced the misfolding of proteins identified as vulnerable to thermal stress. Following prior studies in C. elegans in which mutant huntingtin (Q103) expression was shown to cause the secondary misfolding of cytosolic proteins, we also demonstrate that mutant huntingtin causes similar 'secondary' misfolding in human cells. Similar to thermal stress, inhibiting new protein synthesis reduced the impact of mutant huntingtin on proteostatic function. These findings suggest that newly made proteins are vulnerable to misfolding when proteostasis is disrupted by insults such as thermal stress and mutant protein aggregation.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Huntingtin Protein/metabolism , Mutation, Missense , Protein Biosynthesis , Proteostasis Deficiencies/metabolism , Amino Acid Substitution , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , HEK293 Cells , Humans , Huntingtin Protein/genetics , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/pathology
18.
Neuropsychopharmacology ; 41(9): 2352-65, 2016 08.
Article in English | MEDLINE | ID: mdl-26997298

ABSTRACT

The abuse of 'bath salts' has raised concerns because of their adverse effects, which include delirium, violent behavior, and suicide ideation in severe cases. The bath salt constituent 3,4-methylenedioxypyrovalerone (MDPV) has been closely linked to these and other adverse effects. The abnormal behavioral pattern produced by acute high-dose MDPV intake suggests possible disruptions of neural communication between brain regions. Therefore, we determined if MDPV exerts disruptive effects on brain functional connectivity, particularly in areas of the prefrontal cortex. Male rats were imaged following administration of a single dose of MDPV (0.3, 1.0, or 3.0 mg/kg) or saline. Resting state brain blood oxygenation level-dependent (BOLD) images were acquired at 4.7 T. To determine the role of dopamine transmission in MDPV-induced changes in functional connectivity, a group of rats received the dopamine D1/D2 receptor antagonist cis-flupenthixol (0.5 mg/kg) 30 min before MDPV. MDPV dose-dependently reduced functional connectivity. Detailed analysis of its effects revealed that connectivity between frontal cortical and striatal areas was reduced. This included connectivity between the prelimbic prefrontal cortex and other areas of the frontal cortex and the insular cortex with hypothalamic, ventral, and dorsal striatal areas. Although the reduced connectivity appeared widespread, connectivity between these regions and somatosensory cortex was not as severely affected. Dopamine receptor blockade did not prevent the MDPV-induced decrease in functional connectivity. The results provide a novel signature of MDPV's in vivo mechanism of action. Reduced brain functional connectivity has been reported in patients suffering from psychosis and has been linked to cognitive dysfunction, audiovisual hallucinations, and negative affective states akin to those reported for MDPV-induced intoxication. The present results suggest that disruption of functional connectivity networks involving frontal cortical and striatal regions could contribute to the adverse effects of MDPV.


Subject(s)
Benzodioxoles/administration & dosage , Brain/drug effects , Brain/physiology , Psychotropic Drugs/administration & dosage , Pyrrolidines/administration & dosage , Animals , Brain Mapping , Designer Drugs/administration & dosage , Dopamine Antagonists/administration & dosage , Flupenthixol/administration & dosage , Magnetic Resonance Imaging , Male , Motor Activity/drug effects , Neural Pathways/drug effects , Neural Pathways/physiology , Rats, Long-Evans , Synthetic Cathinone
19.
Sci Total Environ ; 553: 120-127, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26906699

ABSTRACT

The question of how to minimize monetary cost while meeting basic nutrient requirements (a subsistence diet) was posed by George Stigler in 1945. The problem, known as Stigler's diet problem, was famously solved using the simplex algorithm. Today, we are not only concerned with the monetary cost of food, but also the environmental cost. Efforts to quantify environmental impacts led to the development of footprint (FP) indicators. The environmental footprints of food production span multiple dimensions, including greenhouse gas emissions (carbon footprint), nitrogen release (nitrogen footprint), water use (blue and green water footprint) and land use (land footprint), and a diet minimizing one of these impacts could result in higher impacts in another dimension. In this study based on nutritional and population data for the United States, we identify diets that minimize each of these four footprints subject to nutrient constraints. We then calculate tradeoffs by taking the composition of each footprint's minimum diet and calculating the other three footprints. We find that diets for the minimized footprints tend to be similar for the four footprints, suggesting there are generally synergies, rather than tradeoffs, among low footprint diets. Plant-based food and seafood (fish and other aquatic foods) commonly appear in minimized diets and tend to most efficiently supply macronutrients and micronutrients, respectively. Livestock products rarely appear in minimized diets, suggesting these foods tend to be less efficient from an environmental perspective, even when nutrient content is considered. The results' emphasis on seafood is complicated by the environmental impacts of aquaculture versus capture fisheries, increasing in aquaculture, and shifting compositions of aquaculture feeds. While this analysis does not make specific diet recommendations, our approach demonstrates potential environmental synergies of plant- and seafood-based diets. As a result, this study provides a useful tool for decision-makers in linking human nutrition and environmental impacts.


Subject(s)
Carbon Footprint , Conservation of Natural Resources/economics , Diet/statistics & numerical data , Aquaculture , Fisheries , Humans , Seafood , United States
20.
Ecol Lett ; 19(3): 230-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26689608

ABSTRACT

Terrestrial organic matter can be assimilated by aquatic consumers but implications for biomass and production are unresolved. An ecosystem model was fit to estimate effects of phosphorus (P) load, planktivory, and supply rate of terrestrial particulate organic carbon (TPOC) on phytoplankton and zooplankton in five whole-lake experiments. Phytoplankton biomass increased with P load and planktivory and decreased with TPOC supply rate. Zooplankton biomass increased with P load and responded weakly to planktivory and TPOC supply rate. Zooplankton allochthony (proportion of carbon from terrestrial sources) decreased with P load and planktivory and increased with TPOC supply rate. Lakes with low allochthony (< 0.3) had wide ranges of phytoplankton and zooplankton biomass and production, depending on P load and planktivory. Lakes with high allochthony (> 0.3) had low biomass and production of both phytoplankton and zooplankton. In summary, terrestrial OC inhibits primary production and is a relatively low-quality food source for zooplankton.


Subject(s)
Biomass , Carbon/analysis , Food Chain , Models, Biological , Phosphorus/metabolism , Plankton/growth & development , Lakes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...