Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 12(37): 8963-8971, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34506152

ABSTRACT

Cyanines are useful fluorophores for a myriad of biological labeling applications, but their interactions with biomolecules are unpredictable. Cyanine fluorescence intensity can be highly variable due to complex photoisomerization kinetics, which are exceedingly sensitive to the surrounding environment. This introduces large errors in Förster resonance energy transfer (FRET)-based experiments where fluorescence intensity is the output parameter. However, this environmental sensitivity is a strength from a biological sensing point of view if specific relationships between biomolecular structure and cyanine photophysics can be identified. We describe a set of DNA structures that modulate cyanine fluorescence intensity through the insertion of adenine or thymine bases. These structures simultaneously provide photophysical predictability and tunability. We characterize these structures using steady-state fluorescence measurements, fluorescence correlation spectroscopy (FCS), and time-resolved photoluminescence (TRPL). We find that the photoisomerization rate decreases over an order of magnitude across the adenine series, which is consistent with increasing immobilization of the cyanine moiety by the surrounding DNA structure.


Subject(s)
Carbocyanines/chemistry , DNA/chemistry , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Isomerism , Kinetics , Nucleic Acid Conformation
2.
Chem Sci ; 11(27): 7226-7238, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-34123008

ABSTRACT

In singlet fission (SF) the initially formed correlated triplet pair state, 1(TT), may evolve toward independent triplet excitons or higher spin states of the (TT) species. The latter result is often considered undesirable from a light harvesting perspective but may be attractive for quantum information sciences (QIS) applications, as the final exciton pair can be spin-entangled and magnetically active with relatively long room temperature decoherence times. In this study we use ultrafast transient absorption (TA) and time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy to monitor SF and triplet pair evolution in a series of alkyl silyl-functionalized pentadithiophene (PDT) thin films designed with systematically varying pairwise and long-range molecular interactions between PDT chromophores. The lifetime of the (TT) species varies from 40 ns to 1.5 µs, the latter of which is associated with extremely weak intermolecular coupling, sharp optical spectroscopic features, and complex TR-EPR spectra that are composed of a mixture of triplet and quintet-like features. On the other hand, more tightly coupled films produce broader transient optical spectra but simpler TR-EPR spectra consistent with significant population in 5(TT)0. These distinctions are rationalized through the role of exciton diffusion and predictions of TT state mixing with low exchange coupling J versus pure spin substate population with larger J. The connection between population evolution using electronic and spin spectroscopies enables assignments that provide a more detailed picture of triplet pair evolution than previously presented and provides critical guidance for designing molecular QIS systems based on light-induced spin coherence.

3.
Nat Chem ; 12(1): 63-70, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31767991

ABSTRACT

Singlet fission promises to surpass the Shockley-Queisser limit for single-junction solar cell efficiency through the production of two electron-hole pairs per incident photon. However, this promise has not been fulfilled because singlet fission produces two low-energy triplet excitons that have been unexpectedly difficult to dissociate into free charges. To understand this phenomenon, we study charge separation from triplet excitons in polycrystalline pentacene using an electrochemical series of 12 different guest electron-acceptor molecules with varied reduction potentials. We observe separate optima in the charge yield as a function of driving force for singlet and triplet excitons, including inverted regimes for the dissociation of both states. Molecular acceptors can thus provide a strategic advantage to singlet fission solar cells by suppressing singlet dissociation at optimal driving forces for triplet dissociation. However, even at the optimal driving force, the rate constant for charge transfer from the triplet state is surprisingly small, ~107 s-1, presenting a previously unidentified obstacle to the design of efficient singlet fission solar cells.

4.
Chem Sci ; 9(11): 3004-3013, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29732084

ABSTRACT

We employ a combination of linear spectroscopy, electrochemistry, and transient absorption spectroscopy to characterize the interplay between electron transfer and singlet fission dynamics in polyacene-based dyes attached to nanostructured TiO2. For triisopropyl silylethynyl (TIPS)-pentacene, we find that the singlet fission time constant increases to 6.5 ps on a nanostructured TiO2 surface relative to a thin film time constant of 150 fs, and that triplets do not dissociate after they are formed. In contrast, TIPS-tetracene singlets quickly dissociate in 2 ps at the molecule/TiO2 interface, and this dissociation outcompetes the relatively slow singlet fission process. The addition of an alumina layer slows down electron injection, allowing the formation of triplets from singlet fission in 40 ps. However, the triplets do not inject electrons, which is likely due to a lack of sufficient driving force for triplet dissociation. These results point to the critical balance required between efficient singlet fission and appropriate energetics for interfacial charge transfer.

5.
J Phys Chem Lett ; 8(24): 6086-6091, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29190427

ABSTRACT

The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. We investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side-chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically and is strongly dependent on side-chain identity. These results show that it may be necessary to carefully engineer the solid-state microstructure of these "singlet fission polymers" to produce the long-lived triplets needed to realize efficient photovoltaic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...