Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Biofuels Bioprod ; 17(1): 23, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38350992

ABSTRACT

BACKGROUND: Marine cyanobacteria offer many sustainability advantages, such as the ability to fix atmospheric CO2, very fast growth and no dependence on freshwater for culture. Cyanobacterial biomass is a rich source of sugars and proteins, two essential nutrients for culturing any heterotroph. However, no previous study has evaluated their application as a feedstock for fungal bioprocesses. RESULTS: In this work, we cultured the marine cyanobacterium Synechococcus sp. PCC 7002 in a 3-L externally illuminated bioreactor with working volume of 2 L with a biomass productivity of ~ 0.8 g L-1 day-1. Hydrolysis of the biomass with acids released proteins and hydrolyzed glycogen while hydrolysis of the biomass with base released only proteins but did not hydrolyze glycogen. Among the different acids tested, treatment with HNO3 led to the highest release of proteins and glucose. Cyanobacterial biomass hydrolysate (CBH) prepared in HNO3 was used as a medium to produce cellulase enzyme by the Penicillium funiculosum OAO3 strain while CBH prepared in HCl and treated with charcoal was used as a medium for citric acid by Aspergillus tubingensis. Approximately 50% higher titers of both products were obtained compared to traditional media. CONCLUSIONS: These results show that the hydrolysate of marine cyanobacteria is an effective source of nutrients/proteins for fungal bioprocesses.

2.
Sci Rep ; 9(1): 12288, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31444363

ABSTRACT

Nano-sized drug delivery systems (NDDS) have been widely exploited to achieve targeted delivery of pharmaco-materials. Traditional pharmaceutical approaches, implied in the synthesis of nano-formulations, are obscure owing to the incompatible physico-chemical properties of the core drug as well as some other factors crucial in development of NDDS. Infact, most of the existing methods used in development of NDDS rely on usage of additives or excipients, a special class of chemicals. Barring few exceptions, the usage of synthetic excipients ought to be curtailed because of several associated undesirable features. Such issues necessitate strategies that lead to development of the synthetic excipient free drug delivery system. Plant based extracts have great potential to induce synthesis of nano-sized particles. Considering this fact, here we propose a prototype employing orange fruit juice (OJ) to facilitate bio-mediated synthesis of nano-sized supra-molecular assemblies of 5-fluorouracil (5-FU), a potent anticancer drug. The as-synthesized 5-FU Nanoparticles (NPs) retained the anti-neoplastic efficacy of the parent compound and induced apoptosis in cancer cells. The novel 5-FU NPs formulation demonstrated enhanced efficacy against DMBA induced experimental fibrosarcoma in the mouse model when compared to the micro-sized crystals of parent 5-FU drug.


Subject(s)
Citrus sinensis/chemistry , Drug Delivery Systems , Fibrosarcoma/drug therapy , Fluorouracil/chemical synthesis , Fluorouracil/therapeutic use , Fruit and Vegetable Juices , Nanoparticles/chemistry , Skin Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Calorimetry, Differential Scanning , Caspase 9/metabolism , DNA Fragmentation/drug effects , Disease Models, Animal , Disease Progression , Female , Fibrosarcoma/pathology , Fluorouracil/pharmacology , Kinetics , Male , Mice, Inbred BALB C , Nanoparticles/ultrastructure , Skin Neoplasms/pathology , Spectroscopy, Fourier Transform Infrared , Treatment Outcome , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...