Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 290(2002): 20230316, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37434527

ABSTRACT

The peopling of the Americas and human interaction with the Pleistocene megafauna in South America remain hotly debated. The Santa Elina rock shelter in Central Brazil shows evidence of successive human settlements from around the last glacial maximum (LGM) to the Early Holocene. Two Pleistocene archaeological layers include rich lithic industry associated with remains of the extinct giant ground sloth Glossotherium phoenesis. The remains include thousands of osteoderms (i.e. dermal bones), three of which were human-modified. In this study, we perform a traceological analysis of these artefacts by optical microscopy, non-destructive scanning electron microscopy, UV/visible photoluminescence and synchrotron-based microtomography. We also describe the spatial association between the giant sloth bone remains and stone tools and provide a Bayesian age model that confirms the timing of this association in two time horizons of the Pleistocene in Santa Elina. The conclusion from our traceological study is that the three giant sloth osteoderms were intentionally modified into artefacts before fossilization of the bones. This provides additional evidence for the contemporaneity of humans and megafauna, and for the human manufacturing of personal artefacts on bone remains of ground sloths, around the LGM in Central Brazil.


Subject(s)
Sloths , Xenarthra , Humans , Animals , Brazil , Artifacts , Bayes Theorem
2.
Sci Rep ; 11(1): 5013, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33658558

ABSTRACT

The early evolution of metazoans has been reconstructed by studies on exceptionally preserved molds in siliciclastic rocks from the Ediacaran Period. However, there remains considerable controversy regarding the formation mechanisms of this unusual 'Ediacaran-style' preservation. Proposed hypotheses usually include early authigenesis of minerals, but evidence for this is scarce. In a recently discovered deposit of Ediacaran biota in Brazil, we show that the classic moldic preservation is related to clay mineral authigenesis. Specifically, these clays originated from the alteration of original pyroclastic sediments, likely enhanced by microbial activity, leading to early illitization and morphological templating of the fossiliferous surfaces at a micrometric scale. Such high-fidelity preservation was made possible by rapid burial during volcanic events and the in-situ templating of tissue by clays via microbially-mediated mineralization. This newly described Lagerstätte demonstrates that a number of minerals can facilitate preservation, and that perhaps 'Ediacaran-style' preservation result from different processes leading to the same broad style of preservation.

3.
Nat Ecol Evol ; 1(10): 1455-1464, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29185521

ABSTRACT

The evolutionary events during the Ediacaran-Cambrian transition (~541 Myr ago) are unparalleled in Earth history. The fossil record suggests that most extant animal phyla appeared in a geologically brief interval, with the oldest unequivocal bilaterian body fossils found in the Early Cambrian. Molecular clocks and biomarkers provide independent estimates for the timing of animal origins, and both suggest a cryptic Neoproterozoic history for Metazoa that extends considerably beyond the Cambrian fossil record. We report an assemblage of ichnofossils from Ediacaran-Cambrian siltstones in Brazil, alongside U-Pb radioisotopic dates that constrain the age of the oldest specimens to 555-542 Myr. X-ray microtomography reveals three-dimensionally preserved traces ranging from 50 to 600 µm in diameter, indicative of small-bodied, meiofaunal tracemakers. Burrow morphologies suggest they were created by a nematoid-like organism that used undulating locomotion to move through the sediment. This assemblage demonstrates animal-sediment interactions in the latest Ediacaran period, and provides the oldest known fossil evidence for meiofaunal bilaterians. Our discovery highlights meiofaunal ichnofossils as a hitherto unexplored window for tracking animal evolution in deep time, and reveals that both meiofaunal and macrofaunal bilaterians began to explore infaunal niches during the late Ediacaran.


Subject(s)
Biological Evolution , Fossils/anatomy & histology , Invertebrates/anatomy & histology , Animals , Brazil , Paleontology
4.
Microsc Microanal ; 21(5): 1288-95, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26306692

ABSTRACT

X-ray micro-computed tomography (µCT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray µCT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumbá (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based µCT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.


Subject(s)
Fossils/diagnostic imaging , Paleontology/methods , Tomography, X-Ray/methods , Animals , Brazil
SELECTION OF CITATIONS
SEARCH DETAIL
...