Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 20(25): 17071-17080, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29896596

ABSTRACT

Transition and noble metal clusters have proven to be critical novel materials, potentially offering major advantages over conventional catalysts in a range of value-added catalytic processess such as carbon dioxide transformation to methanol. In this work, a systematic computational study of CO2 adsorption on gas-phase Cu4-xPtx (x = 0-4) clusters is performed. An exhaustive potential energy surface exploration is initially performed using our recent density functional theory basin-hopping global optimization implementation. Ground-state and low-lying energy isomers are identified for Cu4-xPtx clusters. Secondly, a CO2 molecule adsorption process is analyzed on the ground-state Cu4-xPtx configurations, as a function of cluster composition. Our results show that the gas-phase linear CO2 molecule is deformed upon adsorption, with its bend angle varying from about 132° to 139°. Cu4-xPtx cluster geometries remain unchanged after CO2 adsorption, with the exception of Cu3Pt1 and Pt4 clusters. For these particular cases, a structural conversion between the ground-state geometry and the corresponding first isomer configurations is found to be assisted by the CO2 adsorption. For all clusters, the energy barriers between the ground-state and first isomer structures are explored. Our calculated CO2 adsorption energies are found to be larger for Pt-rich clusters, exhibiting a volcano-type plot. The overall effect of a hybrid functional including dispersion forces is also discussed.

2.
J Phys Chem A ; 116(21): 5235-9, 2012 May 31.
Article in English | MEDLINE | ID: mdl-22559786

ABSTRACT

The threshold method is used to explore the potential energy surface of the Pt(1)Pd(12) bimetallic cluster, defined by the Gupta semiempirical potential. A set of helical structures, which follow a Bernal tetrahelix pattern, correspond to local minima for the Pt(1)Pd(12) cluster, characterizing the region of the energy landscape where these structures are present. Both right-handed and left-handed chiral forms were discovered in our searches. Energetic and structural details of each of the tetrahelices are reported as well as the corresponding transition probabilities between these structures and with respect to the icosahedron-shaped global minimum structure via a disconnectivity graph analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...