Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Mini Rev Med Chem ; 24(12): 1187-1202, 2024.
Article in English | MEDLINE | ID: mdl-39004839

ABSTRACT

Accelerated aerobic glycolysis is one of the main metabolic alterations in cancer, associated with malignancy and tumor growth. Although glycolysis is one of the most studied properties of tumor cells, recent studies demonstrate that oxidative phosphorylation (OxPhos) is the main ATP provider for the growth and development of cancer. In this last regard, the levels of mRNA and protein of OxPhos enzymes and transporters (including glutaminolysis, acetate and ketone bodies catabolism, free fatty acid ß-oxidation, Krebs Cycle, respiratory chain, phosphorylating system- ATP synthase, ATP/ADP translocator, Pi carrier) are altered in tumors and cancer cells in comparison to healthy tissues and organs, and non-cancer cells. Both energy metabolism pathways are tightly regulated by transcriptional factors, oncogenes, and tumor-suppressor genes, all of which dictate their protein levels depending on the micro-environmental conditions and the type of cancer cell, favoring cancer cell adaptation and growth. In the present review paper, variation in the mRNA and protein levels as well as in the enzyme/ transporter activities of the OxPhos machinery is analyzed. An integral omics approach to mitochondrial energy metabolism pathways may allow for identifying their use as suitable, reliable biomarkers for early detection of cancer development and metastasis, and for envisioned novel, alternative therapies.


Subject(s)
Biomarkers, Tumor , Mitochondrial Proteins , Neoplasms , Humans , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/drug therapy , Biomarkers, Tumor/metabolism , Mitochondrial Proteins/metabolism , Oxidative Phosphorylation , Energy Metabolism , Animals , Neoplasm Metastasis
2.
Arch Biochem Biophys ; 739: 109559, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36906097

ABSTRACT

Glycolytic and respiratory fluxes were analyzed in cancer and non-cancer cells. The steady-state fluxes in energy metabolism were used to estimate the contributions of aerobic glycolytic and oxidative phosphorylation (OxPhos) pathways to the cellular ATP supply. The rate of lactate production - corrected for the fraction generated by glutaminolysis - is proposed as the appropriate way to estimate glycolytic flux. In general, the glycolytic rates estimated for cancer cells are higher than those found in non-cancer cells, as originally observed by Otto Warburg. The rate of basal or endogenous cellular O2 consumption corrected for non-ATP synthesizing O2 consumption, measured after inhibition by oligomycin (a specific, potent and permeable ATP synthase inhibitor), has been proposed as the appropriate way to estimate mitochondrial ATP synthesis-linked O2 flux or net OxPhos flux in living cells. Detecting non-negligible oligomycin-sensitive O2 consumption rates in cancer cells has revealed that the mitochondrial function is not impaired, as claimed by the Warburg effect. Furthermore, when calculating the relative contributions to cellular ATP supply, under a variety of environmental conditions and for different types of cancer cells, it was found that OxPhos pathway was the main ATP provider over glycolysis. Hence, OxPhos pathway targeting can be successfully used to block in cancer cells ATP-dependent processes such as migration. These observations may guide the re-design of novel targeted therapies.


Subject(s)
Adenosine Triphosphate , Neoplasms , Adenosine Triphosphate/metabolism , Energy Metabolism , Glycolysis/physiology , Oxidative Phosphorylation , Citric Acid Cycle
3.
Front Oncol ; 12: 1018137, 2022.
Article in English | MEDLINE | ID: mdl-36419896

ABSTRACT

Several biological processes related to cancer malignancy are regulated by 17-ß estradiol (E2) in ER+-breast cancer. To establish the role of E2 on the atypical cancer energy metabolism, a systematic study analyzing transcription factors, proteins, and fluxes associated with energy metabolism was undertaken in multicellular tumor spheroids (MCTS) from human ER+ MCF-7 breast cancer cells. At E2 physiological concentrations (10 and 100 nM for 24 h), both ERα and ERß receptors, and their protein target pS2, increased by 0.6-3.5 times vs. non-treated MCTS, revealing an activated E2/ER axis. E2 also increased by 30-470% the content of several transcription factors associated to mitochondrial biogenesis and oxidative phosphorylation (OxPhos) (p53, PGC1-α) and glycolytic pathways (HIF1-α, c-MYC). Several OxPhos and glycolytic proteins (36-257%) as well as pathway fluxes (48-156%) significantly increased being OxPhos the principal ATP cellular supplier (>75%). As result of energy metabolism stimulation by E2, cancer cell migration and invasion processes and related proteins (SNAIL, FN, MM-9) contents augmented by 24-189% vs. non-treated MCTS. Celecoxib at 10 nM blocked OxPhos (60%) as well as MCTS growth, cell migration and invasiveness (>40%); whereas the glycolytic inhibitor iodoacetate (0.5 µM) and doxorubicin (70 nM) were innocuous. Our results show for the first time using a more physiological tridimensional cancer model, resembling the initial stages of solid tumors, that anti-mitochondrial therapy may be useful to deter hormone-dependent breast carcinomas.

4.
Eur J Histochem ; 66(1)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35174683

ABSTRACT

Desmoplastic stroma (DS) and the epithelial-to-mesenchymal transition (EMT) play a key role in pancreatic ductal adenocarcinoma (PDAC) progression. To date, however, the combined expression of DS and EMT markers, and their association with variations in survival within each clinical stage and degree of tumor differentiation is unknown. The purpose of this study was to investigate the association between expression of DS and EMT markers and survival variability in patients diagnosed with PDAC. We examined the expression levels of DS markers alpha smooth muscle actin (α-SMA), fibronectin, and vimentin, and the EMT markers epithelial cell adhesion molecule (EPCAM), pan-cytokeratin, and vimentin, by immunohistochemistry using a tissue microarray of a retrospective cohort of 25 patients with PDAC. The results were examined for association with survival by clinical stage and by degree of tumor differentiation. High DS markers expression -α-SMA, fibronectin, and vimentin- was associated with decreased survival at intermediate and advanced clinical stages (p=0.006-0.03), as well as with both poorly and moderately differentiated tumor grades (p=0.01-0.02). Interestingly, the same pattern was observed for EMT markers, i.e., EPCAM, pan-cytokeratin, and vimentin (p=0.00008-0.03). High expression of DS and EMT markers within each clinical stage and degree of tumor differentiation was associated with lower PDAC survival. Evaluation of these markers may have a prognostic impact on survival time variation in patients with PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Epithelial-Mesenchymal Transition/physiology , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Prognosis , Retrospective Studies
5.
Curr Med Chem ; 29(15): 2719-2735, 2022.
Article in English | MEDLINE | ID: mdl-34636290

ABSTRACT

BACKGROUND: The major hurdles for successful cancer treatment are drug resistance and invasiveness developed by breast cancer stem cells (BCSC). OBJECTIVE: As these two processes are highly energy-dependent, the identification of the main ATP supplier required for stem cell viability may result advantageous in the design of new therapeutic strategies to deter malignant carcinomas. METHODS: The energy metabolism (glycolysis and oxidative phosphorylation, OxPhos) was systematically analyzed by assessing relevant protein contents, enzyme activities, and pathway fluxes in BCSC. Once identified as the main ATP supplier, selective energy inhibitors and canonical breast cancer drugs were used to block stem cell viability and metastatic properties. RESULTS: OxPhos and glycolytic protein contents, as well as HK and LDH activities were several times higher in BCSC than in their parental line, MCF-7 cells. However, CS, GDH, COX activities, and both energy metabolism pathway fluxes were significantly lower (38-86%) in BCSC than in MCF-7 cells. OxPhos was the main ATP provider (>85%) in BCSC. Accordingly, oligomycin (a specific and potent canonical OxPhos inhibitor) and other non-canonical drugs with inhibitory effect on OxPhos (celecoxib, dimethylcelecoxib) significantly decreased BCSC viability, levels of epithelial-mesenchymal transition proteins, invasiveness, and induced ROS over-production, with IC50 values ranging from 1 to 20 µM in 24 h treatment. In contrast, glycolytic inhibitors (gossypol, iodoacetic acid, 3-bromopyruvate, 2-deoxyglucose) and canonical chemotherapeutic drugs (paclitaxel, doxorubicin, cisplatin) were much less effective against BCSC viability (IC50> 100 µM). CONCLUSION: These results indicated that the use of some NSAIDs may be a promising alternative therapeutic strategy to target BCSC.


Subject(s)
Breast Neoplasms , Oxidative Phosphorylation , Adenosine Triphosphate/metabolism , Breast Neoplasms/pathology , Celecoxib/pharmacology , Celecoxib/therapeutic use , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Female , Humans , Neoplastic Stem Cells/metabolism
6.
Biochim Biophys Acta Gen Subj ; 1865(12): 130021, 2021 12.
Article in English | MEDLINE | ID: mdl-34597724

ABSTRACT

BACKGROUND: Most of the enzymes involved in the central carbon metabolism are acetylated in Lys residues. It has been claimed that this covalent modification represents a novel regulatory mechanism by which both enzyme/transporter activities and pathway fluxes can be modulated. METHODS: To establish which enzymes are regulated by acetylation, a systematic experimental analysis of activities and acetylation profile for several energy metabolism enzymes and pathway fluxes was undertaken in cells and mitochondria. RESULTS: The majority of the glycolytic and neighbor enzymes as well as mitochondrial enzymes indeed showed Lys-acetylation, with GLUT1, HPI, CS, ATP synthase displaying comparatively lower acetylation patterns. The incubation of cytosolic and mitochondrial fractions with recombinant Sirt-3 produced lower acetylation signals, whereas incubation with acetyl-CoA promoted protein acetylation. Significant changes in acetylation levels of MDH and IDH-2 from rat liver mitochondria revealed no change in their activities. Similar observations were attained for the cytosolic enzymes from AS-30D and HeLa cells. A minor but significant (23%) increase in the AAT-MDH complex activity induced by acetylation was observed. To examine this question further, AS-30D and HeLa cells were treated with nicotinamide and valproic acid. These compounds promoted changes in the acetylation patterns of glycolytic proteins, although their activities and the glycolytic flux (as well as the OxPhos flux) revealed no clear correlation with acetylation. CONCLUSION: Acetylation seems to play no predominant role in the control of energy metabolism enzyme activities and pathway fluxes. GENERAL SIGNIFICANCE: The physiological function of protein acetylation on energy metabolism pathways remains to be elucidated.


Subject(s)
Glucose Transporter Type 1 , Acetylation , Energy Metabolism , HeLa Cells , Humans
7.
Front Oncol ; 11: 697408, 2021.
Article in English | MEDLINE | ID: mdl-34414111

ABSTRACT

Under dysbiosis, a gut metabolic disorder, short-chain carboxylic acids (SCCAs) are secreted to the lumen, affecting colorectal cancer (CRC) development. Butyrate and propionate act as CRC growth inhibitors, but they might also serve as carbon source. In turn, the roles of acetate as metabolic fuel and protein acetylation promoter have not been clearly elucidated. To assess whether acetate favors CRC growth through active mitochondrial catabolism, a systematic study evaluating acetate thiokinase (AcK), energy metabolism, cell proliferation, and invasiveness was performed in two CRC cell lines incubated with physiological SCCAs concentrations. In COLO 205, acetate (+glucose) increased the cell density (50%), mitochondrial protein content (3-10 times), 2-OGDH acetylation, and oxidative phosphorylation (OxPhos) flux (36%), whereas glycolysis remained unchanged vs. glucose-cultured cells; the acetate-induced OxPhos activation correlated with a high AcK activity, content, and acetylation (1.5-6-fold). In contrast, acetate showed no effect on HCT116 cell growth, OxPhos, AcK activity, protein content, and acetylation. However, a substantial increment in the HIF-1α content, HIF-1α-glycolytic protein targets (1-2.3 times), and glycolytic flux (64%) was observed. Butyrate and propionate decreased the growth of both CRC cells by impairing OxPhos flux through mitophagy and mitochondrial fragmentation activation. It is described, for the first time, the role of acetate as metabolic fuel for ATP supply in CRC COLO 205 cells to sustain proliferation, aside from its well-known role as protein epigenetic regulator. The level of AcK determined in COLO 205 cells was similar to that found in human CRC biopsies, showing its potential role as metabolic marker.

8.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33333716

ABSTRACT

This study shows that the non-steroidal anti-inflammatory drug (NSAID) celecoxib and its non-cyclooxygenase-2 (COX2) analogue dimethylcelecoxib (DMC) exert a potent inhibitory effect on the growth of human cervix HeLa multi-cellular tumor spheroids (MCTS) when added either at the beginning ("preventive protocol"; IC50 = 1 ± 0.3 nM for celecoxib and 10 ± 2 nM for DMC) or after spheroid formation ("curative protocol"; IC50 = 7.5 ± 2 µM for celecoxib and 32 ± 10 µM for DMC). These NSAID IC50 values were significantly lower than those attained in bidimensional HeLa cells (IC50 = 55 ± 9 µM celecoxib and 48 ± 2 µM DMC) and bidimensional non-cancer cell cultures (3T3 fibroblasts and MCF-10A mammary gland cells with IC50 from 69 to >100 µM, after 24 h). The copper-based drug casiopeina II-gly showed similar potency against HeLa MCTS. Synergism analysis showed that celecoxib, DMC, and casiopeinaII-gly at sub-IC50 doses increased the potency of cisplatin, paclitaxel, and doxorubicin to hinder HeLa cell proliferation through a significant abolishment of oxidative phosphorylation in bidimensional cultures, with no apparent effect on non-cancer cells (therapeutic index >3.6). Similar results were attained with bidimensional human cervix cancer SiHa and human glioblastoma U373 cell cultures. In HeLa MCTS, celecoxib, DMC and casiopeina II-gly increased cisplatin toxicity by 41-85%. These observations indicated that celecoxib and DMC used as adjuvant therapy in combination with canonical anti-cancer drugs may provide more effective alternatives for cancer treatment.

9.
Cells ; 8(10)2019 10 09.
Article in English | MEDLINE | ID: mdl-31600993

ABSTRACT

Cancer development, growth, and metastasis are highly regulated by several transcription regulators (TRs), namely transcription factors, oncogenes, tumor-suppressor genes, and protein kinases. Although TR roles in these events have been well characterized, their functions in regulating other important cancer cell processes, such as metabolism, have not been systematically examined. In this review, we describe, analyze, and strive to reconstruct the regulatory networks of several TRs acting in the energy metabolism pathways, glycolysis (and its main branching reactions), and oxidative phosphorylation of nonmetastatic and metastatic cancer cells. Moreover, we propose which possible gene targets might allow these TRs to facilitate the modulation of each energy metabolism pathway, depending on the tumor microenvironment.


Subject(s)
Gene Regulatory Networks , Neoplasms/metabolism , Energy Metabolism , Gene Expression Regulation, Neoplastic , Glycolysis , Humans , Oxidative Phosphorylation , Tumor Microenvironment
10.
Toxicol Appl Pharmacol ; 370: 65-77, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30878505

ABSTRACT

The resveratrol (RSV) efficacy to affect the proliferation of several cancer cell lines was initially examined. RSV showed higher potency to decrease growth of metastatic HeLa and MDA-MB-231 (IC50 = 200-250 µM) cells than of low metastatic MCF-7, SiHa and A549 (IC50 = 400-500 µM) and non-cancer HUVEC and 3T3 (IC50≥600 µM) cells after 48 h exposure. In order to elucidate the biochemical mechanisms underlying RSV anti-cancer effects, the energy metabolic pathways and the oxidative stress metabolism were analyzed in HeLa cells as metastatic-type cell model. RSV (200 µM/48 h) significantly decreased both glycolysis and oxidative phosphorylation (OxPhos) protein contents (30-90%) and fluxes (40-70%) vs. non-treated cells. RSV (100 µM/1-5 min) also decreased at a greater extent OxPhos flux (net ADP-stimulated respiration) of isolated tumor mitochondria (> 50%) than of non-tumor mitochondria (< 50%), particularly with succinate as oxidizable substrate. In addition, RSV promoted an excessive cellular ROS (2-3 times) production corresponding with a significant decrement in the SOD activity (but not in its content) and GSH levels; whereas the catalase, glutahione reductase, glutathione peroxidase and glutathione-S-transferase activities (but not their contents) remained unchanged. RSV (200 µM/48 h) also induced cellular death although not by apoptosis but rather by promoting a strong mitophagy activation (65%). In conclusion, RSV impaired OxPhos by inducing mitophagy and ROS over-production, which in turn halted metastatic HeLa cancer cell growth.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cell Proliferation/drug effects , Neoplasms/pathology , Oxidative Phosphorylation/drug effects , Oxidative Stress/drug effects , Resveratrol/pharmacology , 3T3 Cells , Animals , Cell Line, Tumor , HeLa Cells , Human Umbilical Vein Endothelial Cells , Humans , MCF-7 Cells , Mice , Mitophagy/drug effects , Neoplasm Metastasis/prevention & control , Phytochemicals/pharmacology
11.
J Cancer Res Clin Oncol ; 145(5): 1283-1295, 2019 May.
Article in English | MEDLINE | ID: mdl-30900156

ABSTRACT

PURPOSE: Heart myxomas have been frequently considered as benign lesions associated with Carney's complex. However, after surgical removal, myxomas re-emerge causing dysfunctional heart. METHODS: To identify whether cardiac myxomas may develop a metastatic phenotype as occurs in malignant cancers, a profile of several proteins involved in malignancy such as oncogenes (c-MYC, K-RAS and H-RAS), cancer-associated metabolic transcriptional factors (HIF-1α, p53 and PPAR-γ) and epithelial-mesenchymal transition proteins (fibronectin, vimentin, ß-catenin, SNAIL and MMP-9) were evaluated in seven samples from a cohort of patients with atrial and ventricular myxomas. The analysis was also performed in: (1) cardiac tissue surrounding the area where myxoma was removed; (2) non-cancer heart tissue (NCHT); and (3) malignant triple negative breast cancer biopsies for comparative purposes. RESULTS: Statistical analysis applying univariate (Kruskal-Wallis and Dunn's tests) and multivariate analyses (PCA, principal component analysis) revealed that heart myxomas (7-15 times) and myxoma surrounding tissue (22-99 times) vs. NCHT showed high content of c-MYC, p53, vimentin, and HIF-1α, indicating that both myxoma and its surrounding area express oncogenes and malignancy-related proteins as occurs in triple negative breast cancer. CONCLUSIONS: Based on ROC (receiver operating characteristics) statistical analysis, c-MYC, HIF-1α, p53, and vimentin may be considered potential biomarkers for malignancy detection in myxoma.


Subject(s)
Cell Transformation, Neoplastic , Heart Neoplasms/etiology , Heart Neoplasms/pathology , Myxoma/etiology , Myxoma/pathology , Phenotype , Animals , Biomarkers, Tumor , Echocardiography , Heart Neoplasms/diagnostic imaging , Humans , Myxoma/diagnostic imaging , Neoplasm Grading , Neoplasm Metastasis , Neoplasm Staging , Oncogenes , Proteome , Proteomics/methods , ROC Curve , Rats
12.
Biochem Pharmacol ; 154: 318-334, 2018 08.
Article in English | MEDLINE | ID: mdl-29800556

ABSTRACT

Capecitabine induced toxicities such as hand-foot syndrome (HFS) and progression of metastatic cancer are both treatable with concurrent celecoxib as shown in the ADAPT (Activating Cancer Stem Cells from Dormancy And Potentiate for Targeting) trial. In the present study, five commonly used NSAIDs, including celecoxib were compared for their pro-oxidative capacities as cytotoxic drugs against human and mouse metastatic melanoma or breast cancer cells in vitroand the source of cellular ROS production induced by celecoxib was examined in greater detail. RESULTS: Celecoxib was unique among the NSAIDs in that it showed particular potency as a cytotoxic drug against the metastatic cancer cells with IC50 values in the low micromolar range. Celecoxib rapidly enhanced mitochondrial superoxide production in situ from cancer cells within minutes, leading to a decrease in cellular respiration and dissipation of the mitochondrial transmembrane potential (Δψm), followed by extensive ROS-dependent apoptosis of the metastatic cancer cells. Celecoxib also showed rapid and direct effects on isolated mitochondria, inducing extensive ROS production in a dose-dependent manner, whilst it inhibited respiration via Complex I or Complex II when tested in whole cells. Mitochondrial ROS production was necessary for the celecoxib induced cell death. INNOVATION AND CONCLUSION: These novel findings for direct effects of celecoxib on mitochondria to induce metastatic cancer cell death via a ROS-dependent pro-oxidative mechanism provide supportive evidence for its combinatorial use as a chemosensitizing agent complementing chemotherapies to improve response rates in patients with advanced metastatic cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Celecoxib/pharmacology , Mitochondria/metabolism , Oxygen Consumption/physiology , Reactive Oxygen Species/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Apoptosis/physiology , Cell Death/drug effects , Cell Death/physiology , Cell Line, Tumor , Dose-Response Relationship, Drug , HeLa Cells , Humans , MCF-7 Cells , Melanoma, Experimental , Mice , Mitochondria/drug effects , NIH 3T3 Cells , Oxygen Consumption/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology
13.
Mol Pharm ; 15(6): 2151-2164, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29746779

ABSTRACT

To establish alternative targeted therapies against triple negative (TN) breast cancer, the energy metabolism and the sensitivity of cell growth, migration, and invasiveness toward metabolic, canonical, and NSAID inhibitors were analyzed in MDA-MB-231 and MDA-MB-468, two TN metastatic breast cancer cell lines, under both normoxia (21% O2) and hypoxia (0.1% O2). For comparative purposes, the analysis was also carried out in the less-metastatic breast MCF-7 cancer cells. Under normoxia, oxidative phosphorylation (OxPhos) was significantly higher (2-times) in MDA-MB-468 than in MDA-MB-231 and MCF-7, whereas their glycolytic fluxes and OxPhos and glycolytic protein contents were all similar. TN cancer cell lines mainly depended on OxPhos (62-75%), whereas MCF-7 cells equally depended on both pathways for ATP supply. Hypoxia for 24 h promoted a significant increase (>20 times) in the glycolytic transcriptional master factor HIF1-α in its target proteins GLUT-1, HKI and II, and LDH-A (2-4 times) as well as in the glycolytic flux (1.3-2 times) vs normoxia in MDA-MB-468, MDA-MB-231, and MCF-7. On the contrary, hypoxia decreased (15-60%) the contents of COXIV, 2OGDH, ND1, and ATP synthase as well as the OxPhos flux (50-75%), correlating with a high mitophagy level in the three cell lines. Under hypoxia, the three cancer cell lines mainly depended on glycolysis (70-80%). Anti-mitochondrial drugs (oligomycin, casiopeina II-gly, and methoxy-TEA) and celecoxib, at doses used to block OxPhos, significantly decreased TN cancer cell proliferation (IC50 = 2-20 µM), migration capacity (10-90%), and invasiveness (25-65%). The present data support the use of mitochondrially targeted inhibitors for the treatment of TN breast carcinoma.


Subject(s)
Antineoplastic Agents/pharmacology , Energy Metabolism/drug effects , Mitochondria/drug effects , Triple Negative Breast Neoplasms/drug therapy , 3T3 Cells , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Inhibitory Concentration 50 , Mice , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Triple Negative Breast Neoplasms/pathology
14.
Int J Oncol ; 45(6): 2549-59, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25270118

ABSTRACT

Infiltrating ductal breast cancer (IDC) is the principal tumor associated-malignancy in Mexican women. In IDC, the development of intermittent hypoxia leads to an adaptive response coordinated by the transcriptional factor HIF-1α. In the present pilot, retrospective/cross-sectional study, the HIF-1α expression was analyzed in 102 tru-cut biopsies from female patients (51 ± 12 years) without previous clinical treatment and compared to 31 normal breast biopsies. The 102 IDC samples corresponded to 56% of HER2-/HR+; 8% of HER2+/HR-; 22% of triple positive (HER2+/HR+); and 14% of triple negative (TN, HER2-/HR-) subtypes. To assess HIF-1α functionality, proteomic and kinetic analysis of glycolytic as well as mitochondrial enzymes, were determined. Validation of HIF-1α as cancer biomarker was assessed by determining the contents of the commonly used biomarkers c-MYC, Ki67, and H- and K-RAS, as well as metastatic and autophagy proteins. Proteomic analysis revealed that HIF-1α, c-MYC, HER2 and COXIV contents were significantly increased in all IDC subtypes vs. normal tissue. The contents and activities of glycolytic proteins were similar between normal and IDC samples, except for HER2-/HR+ where a substantial increase of HKII was observed. Significant increase in 2OGDH and E-cadherin was detected for TN samples vs. other IDC subtypes and for normal samples. These results clearly indicated that HIF-1α + COXIV + c-MYC (+ HER2 for HER2+ subtype) may be useful to depict a breast cancer metabolic marker pattern for diagnosis, whereas the contents of HIF-1α + c-MYC + 2OGDH + E-cadherin may be an alternative useful and reliable signature for TN subtype cancer prognosis.


Subject(s)
Carcinoma, Ductal, Breast/genetics , Proteomics , Receptor, ErbB-2/genetics , Triple Negative Breast Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Ductal, Breast/diagnosis , Carcinoma, Ductal, Breast/pathology , Estrogen Receptor alpha/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis , Mexico , Middle Aged , Prognosis , Proto-Oncogene Proteins c-myc/biosynthesis , Retrospective Studies , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/pathology
15.
J Cell Biochem ; 112(10): 2703-15, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21678471

ABSTRACT

In last decades, the basic, clinical, and translational research efforts have been directed to the identification of standard biomarkers associated with the degree of malignancy. There is an increasingly public health concern for earlier detection of cancer development at stages in which successful treatments can be achieved. To meet this urgent clinical demand, early stage cancer biomarkers supported by reliable and robust experimental data that can be readily applicable in the clinical practice, are required. In the current standard protocols, when one or two of the canonical proliferating index biomarkers are analyzed, contradictory results are frequently reached leading to incorrect cancer diagnostic and unsuccessful therapies. Therefore, the identification of other cellular characteristics or signatures present in the tumor cells either alone or in combination with the well-established proliferation markers emerge as an alternative strategy in the improvement of cancer diagnosis and treatment. Because it is well known that several pathways and processes are altered in tumor cells, the concept of "single marker" in cancer results incorrect. Therefore, this review aims to analyze and discuss the proposal that the molecular profile of different genes or proteins in different altered tumor pathways must be established to provide a better global clinical pattern for cancer detection and prognosis.


Subject(s)
Biomarkers, Tumor/metabolism , Neoplasms/metabolism , Humans , Neoplasms/diagnosis , Neoplasms/pathology , Prognosis , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...