Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carcinogenesis ; 24(4): 703-10, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12727799

ABSTRACT

Activation of K-ras oncogene has been implicated in colorectal carcinogenesis, being mutated in 30-60% of the adenocarcinomas. In this study, 737 incident colorectal cancer (CRC) patients, originating from 120 852 men and women (55-69 years at baseline) participating in the Netherlands Cohort Study (NLCS), were studied in order to evaluate subgroups with respect to K-ras mutation status. Mutation analysis of the exon 1 fragment of the K-ras oncogene, spanning codons 8-29, was performed on archival colorectal adenocarcinoma samples of all patients using macrodissection, nested PCR and direct sequencing of purified fragments. The method of mutation detection was validated by the confirmation of reported K-ras status in CRC cell lines, a good correlation between fresh-frozen and routinely fixed, paraffin-embedded tissue, a detection limit of 5% mutated DNA and a good reproducibility. Various types of K-ras mutations were evaluated with respect to tumour sub-localization, Dukes' stage and tumour differentiation. In 37% (271/737) of the patients, the exon 1 fragment of K-ras gene was found to be mutated. The predominant mutations are G>A transitions and G>T transversions, and codons 12 and 13 are the most frequently affected codons. Patients with a rectal tumour were found to have the highest frequency of G>T transversions as compared with patients with a colon or rectosigmoid tumour. This difference appeared to be confined to women with a rectal tumour harbouring G>T transversions. No significant differences were observed for Dukes' stage with respect to types of K-ras mutation, which does not support direct involvement of the K-ras oncogene in adenocarcinoma progression. The equal distribution of K-ras mutations among cases with or without a family history of colorectal cancer argues against an important role for this mutation in familial colorectal cancer, and could imply that K-ras mutations are more probably involved in environmental mechanisms of colorectal carcinogenesis.


Subject(s)
Colorectal Neoplasms/genetics , Genes, ras , Mutation , Base Sequence , Cohort Studies , Colorectal Neoplasms/epidemiology , DNA Primers , Humans , Netherlands/epidemiology
2.
Oncogene ; 21(23): 3792-5, 2002 May 23.
Article in English | MEDLINE | ID: mdl-12032847

ABSTRACT

Human cancer is characterized by genetic and epigenetic alterations. In this study we provide evidence for the interruption of Ras signaling in sporadic colorectal cancer (CRC) by either genetic activation of the K-ras oncogene or epigenetic silencing of the putative tumor suppressor gene RASSF1A. Paraffin embedded tumor tissue samples from 222 sporadic CRC patients were analysed for K-ras codon 12 and codon 13 activating mutations and RASSF1A promoter hypermethylation. Overall, K-ras mutations were observed in 87 of 222 (39%) and RASSF1A methylation was observed in 45 of 222 (20%) of CRCs. Mutation of K-ras alone was detected in 76 of 222 (34%) CRCs. RASSF1A promoter methylation with wild-type K-ras was observed in 34 of 222 (15%) CRCs. In 101 of 222 (46%) CRCs neither K-ras mutations nor RASSF1A methylation was observed and 11 of 222 (5%) CRCs showed both K-ras mutations and RASSF1A methylation. These data show that the majority of the studied CRCs with K-ras mutations lack RASSF1A promoter methylation, an event which occurs predominantly in K-ras wild-type CRCs (P=0.023, Chi-square test).


Subject(s)
Colorectal Neoplasms/genetics , DNA Methylation , Genes, Tumor Suppressor , Genes, ras/genetics , Mutation/genetics , Neoplasm Proteins/genetics , Promoter Regions, Genetic/genetics , Tumor Suppressor Proteins , Base Sequence , Colorectal Neoplasms/metabolism , DNA Mutational Analysis , Humans , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...