Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 915: 170143, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38242477

ABSTRACT

Microbial communities in surface waters are affected by environmental conditions and can influence changes in water quality. To explore the hypothesis that the microbiome in agricultural waters associates with spatiotemporal variations in overall water quality and, in turn, has implications for resource monitoring and management, we characterized the relationships between the microbiota and physicochemical properties in a model irrigation pond as a factor of sampling time (i.e., 9:00, 12:00, 15:00) and location within the pond (i.e., bank vs. interior sites and cross-sectional depths at 0, 1, and 2 m). The microbial communities, which were defined by 16S rRNA gene sequencing analysis, significantly varied based on all sampling factors (PERMANOVA P < 0.05 for each). While the relative abundances of dominant phyla (e.g., Proteobacteria and Bacteroidetes) were relatively stable throughout the pond, subtle yet significant increases in α-diversity were observed as the day progressed (ANOVA P < 0.001). Key water quality properties that also increased between the morning and afternoon (i.e., pH, dissolved oxygen, and temperature) positively associated with relative abundances of Cyanobacteria, though were inversely proportional to Verrucomicrobia. These properties, among additional parameters such as bioavailable nutrients (e.g., NH3, NO3, PO4), chlorophyll, phycocyanin, conductivity, and colored dissolved organic matter, exhibited significant relationships with relative abundances of various bacterial genera as well. Further investigation of the microbiota in underlying sediments revealed significant differences between the bank and interior sites of the pond (P < 0.05 for α- and ß-diversity). Overall, our findings emphasize the importance of accounting for time of day and water sampling location and depth when surveying the microbiomes of irrigation ponds and other small freshwater sources.


Subject(s)
Cyanobacteria , Ponds , Ponds/microbiology , RNA, Ribosomal, 16S/genetics , Cross-Sectional Studies , Proteobacteria/genetics , Cyanobacteria/genetics
2.
J Environ Qual ; 49(6): 1633-1643, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33200447

ABSTRACT

Several manure-borne microorganism removal models have been developed to provide accurate estimations of the number of microorganisms removed from manure or manured soils undergoing rainfall. It has been commonly assumed that these models perform equally well when used to simulate microbe removal in runoff from manures of different consistency and levels of weathering. The objectives of this work were (a) to observe kinetics of the removal of Escherichia coli and enterococci with runoff for two different manure consistencies and three manure weathering durations, and (b) to compare performance of the log-linear, Vadas-Kleinman-Sharpley, and Bradford-Shijven models in simulation of the observed kinetics. Liquid and solid dairy manure were applied to grassed soil boxes that received simulated rainfall immediately after application and subsequently at 1 and 2 wk. Runoff samples were collected for 1 h at increasing time intervals during each event. Only the effective rainfall depth at the start of runoff was significantly affected by manure consistency (p = .033), whereas other parameters were not (p > .05). Substantial differences in microorganism removal kinetics during the initial, 1-, and 2-wk rainfall events were manifested by the significant (p < .05) effect of the degree of manure weathering in about 70% of cases. The log-linear model produced the largest fitting error especially during the initial rainfall event. The Vadas-Kleinman-Sharpley model and the Bradford-Schijven model were comparable in accuracy for all events. The latter model was slightly more accurate, and the former model had better expressed dependencies of parameter values on manure weathering. Ignoring manure weathering may lead to incorrect parameterization of manure removal models.


Subject(s)
Manure , Rain , Feces , Indicators and Reagents , Kinetics , Phosphorus , Soil , Water Movements
3.
Environ Monit Assess ; 192(11): 706, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33064217

ABSTRACT

Recently, cyanobacteria blooms have become a concern for agricultural irrigation water quality. Numerous studies have shown that cyanotoxins from these harmful algal blooms (HABs) can be transported to and assimilated into crops when present in irrigation waters. Phycocyanin is a pigment known only to occur in cyanobacteria and is often used to indicate cyanobacteria presence in waters. The objective of this work was to identify the most influential environmental covariates affecting the phycocyanin concentrations in agricultural irrigation ponds that experience cyanobacteria blooms of the potentially toxigenic species Microcystis and Aphanizomenon using machine learning methodology. The study was performed at two agricultural irrigation ponds over a 5-month period in the summer of 2018. Phycocyanin concentrations, along with sensor-based and fluorometer-based water quality parameters including turbidity (NTU), pH, dissolved oxygen (DO), fluorescent dissolved organic matter (fDOM), conductivity, chlorophyll, color dissolved organic matter (CDOM), and extracted chlorophyll were measured. Regression tree analyses were used to determine the most influential water quality parameters on phycocyanin concentrations. Nearshore sampling locations had higher phycocyanin concentrations than interior sampling locations and "zones" of consistently higher concentrations of phycocyanin were found in both ponds. The regression tree analyses indicated extracted chlorophyll, CDOM, and NTU were the three most influential parameters on phycocyanin concentrations. This study indicates that sensor-based and fluorometer-based water quality parameters could be useful to identify spatial patterns of phycocyanin concentrations and therefore, cyanobacteria blooms, in agricultural irrigation ponds and potentially other water bodies.


Subject(s)
Phycocyanin , Ponds , Agricultural Irrigation , Environmental Monitoring , Maryland
4.
Sci Total Environ ; 670: 732-740, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-30909049

ABSTRACT

The microbial quality of irrigation water is typically assessed by measuring the concentrations of E. coli in irrigation water reservoirs that are variable in space and time. E. coli concentrations are affected by water quality parameters that co-vary with E. coli concentrations and may be easily measured with currently available sensors. The objective of this work was to identify the most influential environmental covariates affecting E. coli concentrations during a three-month biweekly monitoring period within two irrigation ponds in Maryland during the summer of 2017. E. coli levels as well as sensor-based water quality parameters including turbidity, pH, dissolved oxygen, dissolved fluorescent organic matter, conductivity, and chlorophyll were measured at 23 and 34 locations in ponds 1 and 2, respectively. Regression tree analyses were used to determine the most influential water quality parameters for the prediction of E. coli levels. Correlations between E. coli and water quality covariates were not strong and were inconsistently significant. Shoreline sample locations had higher E. coli concentrations than interior pond samples and significant differences were observed when comparing these two groups. Regression trees provided fairly accurate predictions of E. coli levels based on water quality parameters with R2 values ranging from 0.70 to 0.93. Factors identified via the regression trees varied by sampling date but common leading covariates included cyanobacteria, organic matter, and turbidity. Results indicated environmental covariates, sensed either remotely or in situ, could be useful to delineate areas with different E. coli survival conditions across irrigation ponds and potentially other water bodies such as lakes, rivers, or bays.


Subject(s)
Agricultural Irrigation , Environmental Monitoring , Escherichia coli/growth & development , Ponds/microbiology , Water Microbiology , Maryland , Seasons
5.
J Environ Qual ; 47(5): 931-938, 2018 09.
Article in English | MEDLINE | ID: mdl-30272779

ABSTRACT

Microbial water quality lies in the nexus of human, animal, and environmental health. Multidisciplinary efforts are under way to understand how microbial water quality can be monitored, predicted, and managed. This special collection of papers in the was inspired by the idea of creating a special section containing the panoramic view of advances and challenges in the arena of microbial water quality research. It addresses various facets of health-related microorganism release, transport, and survival in the environment. The papers analyze the spatiotemporal variability of microbial water quality, selection of predictors of the spatiotemporal variations, the role of bottom sediments and biofilms, correlations between concentrations of indicator and pathogenic organisms and the role for risk assessment techniques, use of molecular markers, subsurface microbial transport as related to microbial water quality, antibiotic resistance, real-time monitoring and nowcasting, watershed scale modeling, and monitoring design. Both authors and editors represent international experience in the field. The findings underscore the challenges of observing and understanding microbial water quality; they also suggest promising research directions for improving the knowledge base needed to protect and improve our water sources.


Subject(s)
Water Microbiology , Water Quality , Animals , Environmental Monitoring , Escherichia coli , Humans
6.
J Environ Manage ; 192: 309-318, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28199898

ABSTRACT

Limited information exists on the unhindered release of bioactive phosphorus (P) from a manure layer to model the partitioning and transport of component P forms before they reach an underlying soil. Rain simulations were conducted to quantify effects of intensity (30, 60, and 90 mm h-1) on P release from an application of 60 Mg ha-1 of dairy manure. Runoff contained water-extractable- (WEP), exchangeable and enzyme-labile bioactive P (TBIOP), in contrast to the operationally defined "dissolved-reactive P" form. The released P concentrations and flow-weighed mass loads were described by the log-normal probability density function. At a reference condition of 30 mm h-1 and maintaining the surface at a 5% incline, runoff was minimal, and WEP accounted for 20.9% of leached total P (TP) concentrations, with an additional 25-30% as exchangeable and enzyme-labile bioactive P over the 1-h simulation. On a 20% incline, increased intensity accelerated occurrence of concentrationmax and shifted the skewed P concentration distribution more to the left. Differences in trends of WEP, TBIOP, or net enzyme-labile P (PHPo) cumulative mass released per unit mass of manure between intensities were attributable to the higher frequency of raindrops striking the manure layer, thus increasing detachment and load of colloidal PHPo of the water phases. Thus, detailed knowledge of manure physical characteristics, bioactive P distribution in relation to rain intensity, and attainment of steady-state of water fluxes were critical factors in improved prediction of partitioning and movement of manure-borne P under rainfall.


Subject(s)
Manure , Phosphorus , Rain , Soil , Soil Pollutants , Water Movements
7.
Appl Environ Microbiol ; 81(14): 4801-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25956764

ABSTRACT

Once released, manure-borne bacteria can enter runoff via interaction with the thin mixing layer near the soil surface. The objectives of this work were to document temporal changes in profile distributions of manure-borne Escherichia coli and enterococci in the near-surface soil layers after simulated rainfalls and to examine differences in survival of the two fecal indicator bacteria. Rainfall simulations were performed in triplicate on soil-filled boxes with grass cover and solid manure application for 1 h with rainfall depths of 30, 60, and 90 mm. Soil samples were collected weekly from depth ranges of 0 to 1, 1 to 2, 2 to 5, and 5 to 10 cm for 1 month. Rainfall intensity was found to have a significant impact on the initial concentrations of fecal indicator bacteria in the soil. While total numbers of enterococci rapidly declined over time, E. coli populations experienced initial growth with concentration increases of 4, 10, and 25 times the initial levels at rainfall treatment depths of 30, 60, and 90 mm, respectively. E. coli populations grew to the approximately the same level in all treatments. The 0- to 1-cm layer contained more indicator bacteria than the layers beneath it, and survival of indicator bacteria was better in this layer, with decimation times between 12 and 18 days after the first week of growth. The proportion of bacteria in the 0- to 1-cm layer grew with time as the total number of bacteria in the 0- to 10-cm layer declined. The results of this work indicate the need to revisit the bacterial survival patterns that are assumed in water quality models.


Subject(s)
Enterococcus/growth & development , Escherichia coli/growth & development , Manure/microbiology , Microbial Viability , Soil Microbiology , Rain/chemistry , Soil/chemistry
8.
Water Res ; 59: 316-24, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24839925

ABSTRACT

As sediments increasingly become recognized as reservoirs of indicator and pathogen microorganisms, an understanding of the persistence of indicator organisms becomes important for assessment and predictions of microbial water quality. The objective of this work was to observe the response of water column and sediment coliform populations to the change in nutrient concentrations in the water column. Survival experiments were conducted in flow-through chambers containing sandy sediments. Bovine feces were collected fresh and introduced into sediment. Sixteen days later, the same fecal material was autoclaved and diluted to provide three levels - 1×, 0.5×, and 0.1× of nutrient concentrations - spike in water column. Total coliforms, Escherichia coli, and total aerobic heterotrophic bacterial concentrations were monitored in water and sediment. Bacteria responded to the nutrient spike with initial growth both in the water column and in sediment. The response of bacterial concentrations in water column was nonlinear, with no significant changes at 0.1 and .5× spikes, but a substantial change at 1× spike. Bacteria in sediment responded to the spikes at all added nutrient levels. Coliform inactivation rates both in sediment and in water after the initial growth occurred, were not significantly different from the inactivation rates before spike. These results indicate that introduction of nutrients into the water column results in nonlinear response of E. coli concentrations both in water and in sediments, followed by the inactivation with the same rate as before introduction of nutrients.


Subject(s)
Enterobacteriaceae/drug effects , Geologic Sediments/microbiology , Phosphates/pharmacology , Rivers/microbiology , Water Pollutants, Chemical/chemistry , Animals , Cattle , Enterobacteriaceae/physiology , Feces/microbiology , Phosphates/chemistry , Water Microbiology
9.
Lett Appl Microbiol ; 59(3): 278-83, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24739086

ABSTRACT

UNLABELLED: The objective of this study was to compare dependency of survival rates on temperature for indicator organisms Escherichia coli and Enterococcus and the pathogen Salmonella in surface waters. A database of 86 survival datasets from peer-reviewed papers on inactivation of E. coli, Salmonella and Enterococcus in marine waters and of E. coli and Salmonella in lake waters was assembled. The Q10 model was used to express temperature effect on survival rates obtained from linear sections of semi-logarithmic survival graphs. Available data were insufficient to establish differences in survival rates and temperature dependencies for marine waters where values of Q10  = 3 and a survival rate of 0·7 day(-1) could be applied. The Q10 values in lake waters were substantially lower in marine waters, and Salmonella inactivation in lake water was, on average, twice as fast as E. coli; data on E. coli substantially outnumber data on Enterococcus and Salmonella. The relative increase in inactivation with increase in temperature is higher in marine waters than lake water, and differences in inactivation between Salmonella and E. coli at a given temperature were significant in lake water but not in marine waters. SIGNIFICANCE AND IMPACT OF THE STUDY: Microbiological quality of surface waters is of paramount importance for public health. The novelty of this work is using a large compendium of published data to develop the first comparison of temperature effects on survival of the pathogen Salmonella and water quality indicator micro-organisms Escherichia coli and Enterococcus in natural waters. The existing relatively large body of knowledge on E. coli survival appears to be useful to assess the effect of temperature on survival of Salmonella. Moreover, results of this work constitute an essential input in models to support environmental management decisions on the use of surface water sources in agriculture, aquaculture and recreation.


Subject(s)
Enterococcus/physiology , Escherichia coli/physiology , Salmonella/physiology , Water Microbiology , Lakes/microbiology , Microbial Viability , Seawater/microbiology , Temperature
10.
J Environ Qual ; 43(5): 1559-65, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25603241

ABSTRACT

Modeling inactivation of indicator microorganisms is a necessary component of microbial water quality forecast and management recommendations. The linear semi-logarithmic (LSL) model is commonly used to simulate the dependencies of bacterial concentrations in waters on time. There were indications that assumption of the semi-logarithmic linearity may not be accurate enough in waters. The objective of this work was to compare performance of the LSL and the two-parametric Weibull inactivation models with data on survival of indicator organism in various types of water from a representative database of 167 laboratory experiments. The Weibull model was preferred in >99% of all cases when the root mean squared errors and Nash-Sutcliffe statistics were compared. Comparison of corrected Akaike statistic values gave the preference to the Weibull model in only 35% of cases. This was caused by (i) a small number of experimental points on some inactivation curves, (ii) closeness of the shape parameter of the Weibull equation to one, and (iii) piecewise log-linear inactivation dynamic that could be well described by neither of the two models compared. Based on the Akaike test, the Weibull model was favored in agricultural, lake, and pristine waters, whereas the LSL model was preferred for groundwater, wastewater, rivers, and marine waters. The decimal reduction time parameter of both the LSL and Weibull models exhibited an Arrhenius-type dependence on temperature. Overall, the existing inactivation data indicate that the application of the Weibull model can improve the predictive capabilities of microbial water quality modeling.

11.
Water Res ; 47(8): 2676-88, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23521976

ABSTRACT

Escherichia coli is the leading indicator of microbial contamination of natural waters, and so its in-stream fate and transport needs to be understood to eventually minimize surface water contamination by microorganisms. To better understand mechanisms of E. coli release and transport from soil sediment in a creek the artificial high-water flow events were created by releasing 60-80 m(3) of city water on a tarp-covered stream bank in four equal allotments in July 2008, 2009 and 2010. A conservative tracer difluorobenzoic acid (DFBA) was added to the released water in 2009 and 2010. Water flow rate, E. coli and DFBA concentrations as well as water turbidity were monitored with automated samplers at three in-stream weirs. A one-dimensional model was applied to simulate water flow, and E. coli and DFBA transport during these experiments. The Saint-Venant equations were used to calculate water depth and discharge while a stream solute transport model accounted for release of bacteria by shear stress from bottom sediments, advection-dispersion, and exchange with transient storage (TS). Reach-specific model parameters were estimated by evaluating observed time series of flow rates and concentrations of DFBA and E. coli at all three weir stations. Observed DFBA and E. coli breakthrough curves (BTC) exhibited long tails after the water pulse and tracer peaks had passed indicating that transient storage (TS) might be an important element of the in-stream transport process. Comparison of simulated and measured E. coli concentrations indicated that significant release of E. coli continued when water flow returned to the base level after the water pulse passed and bottom shear stress was small. The mechanism of bacteria continuing release from sediment could be the erosive boundary layer exchange enhanced by changes in biofilm properties by erosion and sloughing detachment.


Subject(s)
Escherichia coli/physiology , Rivers/microbiology , Water Movements , Chromatography, High Pressure Liquid , Colony Count, Microbial , Floods , Maryland , Models, Theoretical , Seasons
12.
Water Res ; 44(9): 2753-62, 2010 May.
Article in English | MEDLINE | ID: mdl-20219232

ABSTRACT

Escherichia coli bacteria are commonly used as indicator organisms to designate of impaired surface waters and to guide the design of management practices to prevent fecal contamination of water. Stream sediments are known to serve as a reservoir and potential source of fecal bacteria (E. coli) for stream water. In agricultural watersheds, substantial numbers of E. coli may reach surface waters, and subsequently be deposited into sediments, along with fecal material in runoff from land-applied manures, grazing lands, or wildlife excreta. The objectives of this work were (a) to test the hypothesis that E. coli survival in streambed sediment in the presence of manure material will be affected by sediment texture and organic carbon content and (b) to evaluate applicability of the exponential die-off equation to the E. coli survival data in the presence of manure material. Experiments were conducted at three temperatures (4 degrees C, 14 degrees C, and 24 degrees C) in flow-through chambers using sediment from three locations at the Beaverdam Creek Tributary in Beltsville, Maryland mixed with dairy manure slurry in the proportion of 1000:1. Indigenous E. coli populations in sediments ranged from ca. 10(1) to 10(3)MPNg(-1) while approx 10(3) manure-borne E. coli MPNg(-1) were added. E. coli survived in sediments much longer than in the overlaying water. The exponential inactivation model gave an excellent approximation of data after 6-16 days from the beginning of the experiment. Slower inactivation was observed with the increase in organic carbon content in sediments with identical granulometric composition. The increase in the content of fine particles and organic carbon in sediments led not only to the slower inactivation but also to lower sensitivity of the inactivation to temperature. Streambed sediment properties have to be documented to better evaluate the role of sediments as reservoirs of E. coli that can affect microbiological stream water quality during high flow events.


Subject(s)
Escherichia coli/cytology , Geologic Sediments/microbiology , Manure/microbiology , Microbial Viability , Rivers/microbiology , Carbon , Colony Count, Microbial , Feces/microbiology , Organic Chemicals , Temperature
13.
J Environ Qual ; 38(4): 1636-44, 2009.
Article in English | MEDLINE | ID: mdl-19549940

ABSTRACT

Vegetated filter strips (VFS) have become an important component of water quality improvement by reducing sediment and nutrients transport to surface water. This management practice is also beneficial for controlling manure-borne pathogen transport to surface water. The objective of this work was to assess the VFS efficiency and evaluate the uncertainty in predicting the microbial pollutant removal from overland flow in VFS. We used the kinematic wave overland flow model as implemented in KINEROS2 coupled with the convective-dispersive overland transport model which accounts for the reversible attachment-detachment and surface straining of infiltrating bacteria. The model was successfully calibrated with experimental data obtained from a series of simulated rainfall experiments at vegetated and bare sandy loam and clay loam plots, where fecal coliforms were released from manure slurry applied on the top of the plots. The calibrated model was then used to assess the sensitivity of the VFS efficiency to the model parameters, rainfall duration, and intensity for a case study with a 6-m VFS placed at the edge of 200-m long field. The Monte Carlo simulations were also performed to evaluate the uncertainty associated with the VFS efficiency given the uncertainty in the model parameters and key inputs. The VFS efficiency was found to be <95% in 25%, <75% in 23%, and <25% in 20% of cases. Relatively long high-intensity rainfalls, low hydraulic conductivities, low net capillary drives of soil, and high soil moisture contents before rainfalls caused the partial failure of VFS to retain coliforms from the infiltration excess runoff.


Subject(s)
Enterobacteriaceae/isolation & purification , Uncertainty , Water Microbiology , Calibration , Models, Theoretical , Monte Carlo Method , Plants
14.
J Environ Qual ; 38(3): 1233-9, 2009.
Article in English | MEDLINE | ID: mdl-19398521

ABSTRACT

In 2005, the U.S. Environmental Protection Agency (USEPA) National Menu of Best Management Practices (BMPs) listed compost filter socks (FS) as an approved BMP for controlling sediment in storm runoff on construction sites. The objectives of this study were to determine if FS with or without the addition of a flocculation agent to the FS system can significantly remove (i) suspended clay and silt particulates, (ii) ammonium nitrogen (NH(4)-N) and nitrate-nitrite nitrogen (NO(3)-N), (iii) fecal bacteria, (iv) heavy metals, and (v) petroleum hydrocarbons from storm water runoff. Five separate (I-V) 30-min simulated rainfall-runoff events were applied to soil chambers packed with Hartboro silt loam (fine-loamy, mixed, active, nonacid, mesic fluvaquentic Endoaquepts) or a 6-mm concrete veneer on a 10% slope, and all runoff was collected and analyzed for hydraulic flow rate, volume, pollutant concentrations, pollutant loads, and removal efficiencies. In corresponding experiments, runoff was analyzed for (i) size of sediment particles, (ii) NH(4)-N and NO(3)-N, (iii) total coliforms (TC) and Escherichia coli, (iv) Cd, Cr, Cu, Ni, Pb and Zn, and (v) gasoline, diesel, and motor oil, respectively. Results showed that: (i) FS removed 65% and 66% of clay (<0.002 mm) and silt (0.002-0.05 mm), respectively; (ii) FS removed 17%, and 11% of NH(4)-N and NO(3)-N, respectively and when NitroLoxx was added to the FS, removal of NH(4)-N load increased to 27%; (iii) total coliform and E. coli removal efficiencies were 74 and 75%, respectively, however, when BactoLoxx was added, removal efficiency increased to 87 and 99% for TC and 89 and 99% for E. coli, respectively; (iv) FS removal efficiency for Cd, Cr, Cu, Ni, Pb, and Zn ranged from 37 to 72%, and, when MetalLoxx was added, removal efficiency ranged from 47 to 74%; and (v) FS removal efficiency for the three petroleum hydrocarbons ranged from 43 to 99% and the addition of PetroLoxx increased motor oil and gasoline removal efficiency in the FS system.


Subject(s)
Filtration/instrumentation , Water Microbiology , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Escherichia coli/isolation & purification , Hydrocarbons/isolation & purification , Metals, Heavy/isolation & purification , Nitrates/isolation & purification , Particulate Matter/isolation & purification , Quaternary Ammonium Compounds/isolation & purification
15.
J Appl Microbiol ; 103(4): 1122-7, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17897217

ABSTRACT

AIMS: To compare survival of Escherichia coli and faecal coliforms (FC) in bovine faeces deposited in a pasture or incubated in a controlled laboratory environment at temperatures within the same range. METHODS AND RESULTS: Faecal samples from three cow herds were deposited as shaded and nonshaded cowpats in a field and incubated in a laboratory for one month at 21.1, 26.7 and 32.2 degrees C. Both FC and E. coli concentrations increased as much as 1.5 orders of magnitude both in the field and in the laboratory during the 1st week and subsequently decreased. In shaded cowpats, the die-off of E. coli and FC was significantly slower, and the proportion of E. coli in FC was significantly larger as compared with nonshaded cowpats. The die-off was faster in the field than in the laboratory at similar temperatures. CONCLUSIONS: FC and E. coli die-off rates were substantially lower in laboratory conditions than in the field within the same range of temperatures. SIGNIFICANCE AND IMPACT OF THE STUDY: This study underscores the importance of field data on survival of manure-borne FC and E. coli, and indicates that laboratory die-off rates have to be corrected to be used for field condition simulations.


Subject(s)
Escherichia coli/isolation & purification , Feces/microbiology , Manure/microbiology , Animals , Cattle , Colony Count, Microbial , Enterobacteriaceae/growth & development , Enterobacteriaceae/isolation & purification , Escherichia coli/growth & development , Female , Male , Soil Microbiology , Specimen Handling/methods , Temperature , Water/analysis
16.
Lett Appl Microbiol ; 44(2): 161-7, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17257255

ABSTRACT

AIM: To test the hypothesis that Escherichia coli and enterococci bacteria have similar release rates and transport characteristics after being released from land-applied manure. METHODS AND RESULTS: Turfgrass soil sod was placed into 200 cm long boxes that had the top two 25 cm sections separated to monitor the release and infiltration of bacteria, which affected bacteria transport in the rest of the box. Dairy manure with added KBr was broadcast on the top two sections. Boxes with either live or dead grass stand were placed under a rainfall simulator for 90 min. Runoff and infiltration samples were collected and analysed for Br, E. coli, enterococci and turbidity. Significant differences in release kinetics of E. coli and enterococci were found. A change from first-order release kinetics to zero-order kinetics after 1 h of rainfall simulation was observed. CONCLUSION: Differences in release rates but not in the subsequent transport were observed for E. coli and enterococci. SIGNIFICANCE AND IMPACT OF THE STUDY: Because both E. coli and enterococci are currently used as indicator organisms for manure-borne pathogens, the differences in their release rates may affect the efficiency of using these organisms as indicators.


Subject(s)
Enterococcus/isolation & purification , Escherichia coli/isolation & purification , Manure/microbiology , Animals , Buffers , Poaceae
17.
J Environ Manage ; 84(3): 336-46, 2007 Aug.
Article in English | MEDLINE | ID: mdl-16935412

ABSTRACT

Hillslope vegetated buffers are recommended to prevent water pollution from agricultural runoff. However, models to predict the efficacy of different grass buffer designs are lacking. The objective of this work was to develop and test a mechanistic model of coupled surface and subsurface flow and transport of bacteria and a conservative tracer on hillslopes. The testing should indicate what level of complexity and observation density might be needed to capture essential processes in the model. We combined the three-dimensional FEMWATER model of saturated-unsaturated subsurface flow with the Saint-Venant model for runoff. The model was tested with data on rainfall-induced fecal coliforms (FC) and bromide (Br) transport from manure applied at vegetated and bare 6-m long plots. The calibration of water retention parameters was unnecessary, and the same manure release parameters could be used both for simulations of Br and FC. Surface straining rates were similar for Br and bacteria. Simulations of Br and FC concentrations were least successful for the funnels closest to the source. This could be related to the finger-like flow of the manure from the strip along the bare slopes, to the transport of Br and FC with manure colloids that became strained at the grass slope, and to the presence of micro-ponds at the grassed slope. The two-dimensional model abstraction of the actual 3D transport worked well for flux-averaged concentrations. The model developed in this work is suitable to simulate surface and subsurface transport of agricultural contaminants on hillslopes and to evaluate efficiency of grass strip buffers, especially when lateral subsurface flow is important.


Subject(s)
Bromides/chemistry , Enterobacteriaceae , Manure/microbiology , Models, Theoretical , Water Microbiology , Water Pollutants, Chemical/chemistry , Water Movements
18.
Appl Environ Microbiol ; 72(12): 7531-9, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17028232

ABSTRACT

Modeling release of fecal coliforms is an important component of fate and transport simulations related to environmental water quality. Manure constituents other than fecal coliforms may serve as natural tracers of fecal contamination provided that their release from manure to runoff is similar to the fecal coliform release. The objectives of this work were to compare release of fecal coliforms (FC), chloride (Cl-), organic carbon (OC), and water-soluble phosphorus (P) from dissolving manure and to assess the performance of three models in describing the observed release. Bovine manure was applied on 0.5- by 0.3-m bare and vegetated subplots with 20% slope on sandy loam and clay loam soils. Concentrations of Cl-, FC, OC, and P were measured in runoff collected from troughs at the edges of the subplots at 5-min intervals during 1-h rainfall simulations. The one-parametric exponential model and two-parametric Vadas-Kleinman-Sharpley model and Bradford-Schijven model were fitted to the data. The Bradford-Schijven model had uncorrelated parameters, one of which was linearly related to the irrigation rate, and another parameter reflected the presence or the absence of vegetation. Kinetics of the FC release from manure was similar to the release kinetics of P and OC. The Bradford-Schijven model is recommended to simulate the release of manure constituents.


Subject(s)
Chlorides/analysis , Enterobacteriaceae/isolation & purification , Feces/microbiology , Manure/microbiology , Models, Biological , Organic Chemicals/analysis , Rain , Animals , Carbon/analysis , Cattle , Kinetics , Phosphorus/analysis , Soil/analysis
19.
Lett Appl Microbiol ; 41(3): 230-4, 2005.
Article in English | MEDLINE | ID: mdl-16108912

ABSTRACT

AIMS: To test the hypothesis that faecal coliform (FC) and phosphorus (P) are transported similarly in surface runoff through the vegetative filter strip after being released from land-applied manure. METHODS AND RESULTS: The Hagerstown soil was packed into boxes that were 10 cm deep, 30 cm wide and 100, 200 or 300 cm long. Grass was grown in boxes prior experiments. Same-length boxes were placed under rainfall simulator and tilted to have with either 2% or 4% slopes. Dairy manure was broadcast on the upper 30-cm section. Rainfall was simulated and runoff samples were collected and analysed for Cl, FC and total phosphorus (TP). Mass recovery, the concentration decrease rate k, and the ratio FC : TP showed that there was a consistent relationship between FC and TP in runoff. CONCLUSION: The FC and TP transport through simulated vegetated buffer strips were highly correlated. SIGNIFICANCE AND IMPACT OF THE STUDY: As a knowledge base on the effect of the environmental parameters on P transport in vegetated buffer strips is substantially larger than for manure-borne bacteria, the observed similarity may enhance ability to assess the efficiency of the vegetated buffer strips in retention of FC currently used as indicator organisms for manure-borne pathogens.


Subject(s)
Enterobacteriaceae/isolation & purification , Feces/microbiology , Manure/microbiology , Phosphorus/analysis , Soil Microbiology , Animals , Cattle , Poaceae/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...